

Biogeochemistry of selenium and food chain quality

Helinä Hartikainen

Department of Food and Environmental Sciences

University of Helsinki

in co-operatation with Nashmin Ebrahimi, Anthony Owusu-Sekuere, Martina Metzler and Mervi Seppänen

Soils as source of selenium

Selenium as a problem in Finland

Agronomic biofortification

Effects of selenium fertilization on food chain quality

Soils as primary sources of selenium

Selenium World Atlas (Oldfield 2002):

- concentration spectrum is very large ~ 0 1250 ppm
- Iow-Se soils are more common than seleniferous ones
- The geographical distribution can be very uneven
 Se toxicity and deficiency may occur within short distances
- Generally:
 - marine sedimentary deposits (shales) are high in Se
 - soils derived from igneous rocks tend to be low in Se

High-Se soils were recognized far before those deficient in Se

- hyperaccumulating plants
- dramatic toxicity symptoms in domestic animals (necrotic and sloughted hooves, hair loss, emaciation, etc.)

 The first description of disease of horses now known to be a form of Se poisoning was written in 1857 by Madison

Astragalus bisulcatus

Morinda reticulata

- Palatable only to horses, they may even become addicted to this plant
- able to accumulate Se from soils not very high in this metalloid

From a toxicant to an essential nutrient

Low-Se soils are more difficult to identify than those high in Se

 In Finland, the first signals of Se deficiency were unknowingly described in a veterinary report in 1933
 symptoms of nutritional muscular degeneration (NMD)

In 1950's isolated cases throughout the country feed low in Se

NMD disease in Finland 1950's

- Most frequently observed in Ostrobothnia
 - bottom sediments deposited during Littorina stage (salty water high in S) of Baltic Sea
 - rich in FeS₂ (pyrite) and relatively high in Se
 now acid sulfate soils

Uppermost shoreline of the ancient Littorina Sea

Total Se vs. bioavailable Se

Total Se in soil does not necessarily correlate with Se in the food chain

Bioavailability of Se depends on

- chemical pool
 - dissolved in soil solution
 - sorbed on oxide surfaces
 - constituent in organic matter or minerals
- chemical species
 - oxidation states vary from +6 to -2
 - differ in their soil chemistry
 - catenated organic species (e.g. volatile diselenides (RSeSeR)

Selenium problems in Finland

Soils are not exceptionally low in Se but the **bioavailability** of Se is low

- soils are geologically young and weakly weathered
- acidity promotes the sorption reactions
- Situation of domestic animals improved when the Sesupplementation of feeds started in 1969
- "Mineral Element study" in 1970's revealed that
 cereal crops, beef, milk and dairy products very poor in Se
 the average daily Se intake was clearly below the adequate level
- Supplementation of fertilizers with Se started in 1985
 - Se concentrations in foodstuffs markedly increased
 - throughout the monitoring program, milk has been the most sensitive indicator to reveal the changes in food quality

Se concentration of cereal grains in Finland 1984-2006

Se concentration of beef and pork Finland 1981-2006

The average daily Se intake in Finland

Agronomic biofortification in Finland

- **Se** is given as selenate (SeO₄²⁻)
 - less toxic than selenite (SeO₃²⁻)

Selenate is weakly sorbed on AI and Fe oxide surfaces

- the most mobile species, present in oxic conditions
- uptake by plant through sulfate transporter (competition S/Se)
 - competition causes problems in acid sulfate soils
 - translocated efficiently from roots to shoots
- can act as electron acceptor in soil \Rightarrow reduction to selenite

Selenite has a high sorption affinity

- ligand exchange on Fe and Al oxide surfaces, favoured by low pH
- uptake by plants through phosphate transporter
 - tends to accumulate in roots \Rightarrow weaker translocation to shoots

Plants – pivotal Se carriers

Prevailing concept that higher plants do not require Se raised a doubt in Finland:

Why are plants forced to take up an element they don't need?

The concept places also the scientific community in a dilemma, for plants play a key role in cycling Se from soil to animals and humans

Y.

Impact of Se on plants

Results of our first pot experiment with lettuce

- at proper levels Se promotes the plant growth

Lettuce yields at various Se fertilisation levels (µg kg⁻¹ of soil)

Subsequent studies with lettuce: Se also retards senescence of plants

Development of dry weight of lettuce during 8-week cultivation without or with added Se (mg kg⁻¹).

Impact of Se on plants

Growth-promoting effect is associated with the accumulation of energy reserves (starch and soluble sugars)

In proper concentrations Se

- defences plants against various internal metabolic (respiration, photosynthesis) or external (UV-B light, frost, drought, detrimental elements) stressors
- reduces lipid oxidation and maintains cell membrane integrity

improves the quality of plant products

- counteracts the impairment of nutritive value of senescent plants (e.g. the decrease of vitamin E)
- improves e.g. the process quality of potato (reduces raw darkening of tubers)
- e.g. garlic is found to incorporate Se into bioactive organic compounds with anticarsinogenic potential, etc.

Recent studies with Brassica species

- Fertilizer-Se was efficiently metabolized to valuable organic compounds
- 85% of Se taken up had accumulated in seeds as selenomethionine (SeMet) in the protein rich meal fraction
 - ♦ high quality cattle feed
- in *B. napus* selenomethionine selenocysteine (SeMetCys) accumulated in the leaves
- Se seemed to increase the photosynthesis rate

Studies with alfalfa (Medicago sativa)

 N_2 -fixing plant are valuable protein source in feed \Rightarrow food chain

- Se fertilization increased the number and fresh weight of nodules
 - concentration of carotenoids and chlophyll a and b
 - soluble sugars concomitantly with elevated activity of fructose-1,6bisphosphatase
 Carbohydrate metabolism

Se ends up in soil with plant residues

In Finnish soils, sequential Se extractions have revealed that

- only 1% (1%) is in soluble form
- 15–20% (17%) is adsorbed on oxide surfaces
- 50% (39%) is associated with organic matter
- 10% (14%) is elemental Se⁰
- 20% (29%) in recalcitrant organic Se or metal selenides

Numbers **in red** refer to accumulation of fertilizer-Se during 12 years in experimental fields (mineral soils)

Bioavailability of residual fertilizer-Se is rather low in acid soils in humid conditions favoring the reduction of selenate to selenite (efficient sorption onto Fe and Al oxides)

Se fertilization is needed at every seeding

Agronomic measures to improve the animal and human health in Finland

Age-standardized mortality from coronary heart disease in 1952-1999, deaths per 100 000 of population aged 35-64 years. (G. Alfthan et al. 2011)

Biogenic Se emissions

Plants, marine algae and soil microbes contribute to a larger-scale Se cycling

- Biogenic emission of dimethylselenide (DMSe) from soil, plants and algae
 - an important process decreasing the toxicity and mobility of seleno-oxyanions
 - DMSe is 500-700 times less toxic than selenate or selenite
- Phytovolatilization is a potential mechanism for bioremediation of high-Se soils
- Indian mustard (*Brassica juncea*), an superior species
 - rhizosphere microbes further enchance its efficiency in volatilization

Kesterson Reservoir in California

build in 1968-1971 to counteract the irrigation-induced increase in groundwater level

Se toxicity began to become a problem shortly after the drainage tiles were installed

- deformities and death of livestock
- later there was a large die-off of migrating waterfowl

in 1987 the site was declared a toxic waste dump

Conclusions

During the last 30 years many important milestones have been reached on the way to solve Se problems

- Consensus: Se is an essential nutrient for animals and humans but toxic at high concentrations
- Whether Se is required for the growth of higher plants is still a controversial and unresolved question
 - The present development in molecular biology and biochemistry may provide evidence that Se is a plant nutrient even though very tricky and two-egded by its very nature