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INTRODUCTION

Genomic information may be defined as ‘all information contained in the
genome’, but with current and foreseeable future state of technologies this
information is largely restricted to 1) known genes, which may become
increasingly available through QTL mapping, fine-mapping, and causative
mutation detection; 2) genetic markers, which may be used for marker assisted
selection (MAS); 3) use of high-density marker maps in genomic selection (GS).
The latter two points may sound very similar, i.e. they are both using markers for
selection, but there is a fundamental difference: MAS uses only a fraction of total
genetic variation, and thus must always be assisted by traditional animal breeding
methodology, whereas GS tries to utilise all genetic variation and therefore makes
selecting solely for genomic information possible. Hence, it achieves one of the
holy grails of molecular genetics, namely to select directly for genomic
information avoiding the traditional indirect selection for phenotypes of the
animals and their relatives.

It is expected that in the near future animal breeding will increasingly use genomic
information, and that this technology has come to a stage where it is ready for
implementation in 1) breeding value estimation; and 2) novel designs of breeding
schemes. The aim of this paper is to review the possibilities for MAS, GS and the
novel designs breeding schemes.

MAS

The model: The main step in MAS is the development of marker assisted
breeding value estimation (MA-BLUP), which was already developed by
Fernando and Grossman (1989):

y = fixed effects +a + v, + v, + €

where y = the phenotypes, a = the usual animal model effect, which represents the
background genes here (ie. the non-marked genes); v, (Vi) = the effect of the
paternally (maternally) inherited QTL allele. a is a random effect with Var(a) =
Ac,’ ie. the relationship matrix; (v, Vi)’ is a random effect with Var(vy V)

=G O'qz, with the (i,j)-th element of G being equal to the IBD probability of alleles
i and j given the information on nearby markers; and qu is variance explained by
the QTL. Note that this approach does not require that the markers are very close
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to the QTL, but as the distance between the markers and the QTL increases, the G
matrix approaches the usual relationship matrix, A, and the MA-BLUP EBV
approach the usual non-MAS EBV. This is how MA-BLUP is implemented in the
MAS programmes of Germany (Bennewitz et al., 2004) and France (Boichard et
al., 2002).

GENOMIC SELECTION

In genomic selection we will assume the availability of high-density marker
information, implying a marker every ¢cM or even more dense. Especially in the
case of SNP markers a higher density will be required. In genomic selection we
estimate the EBV as:

EB\/1 =X CSEij [1]

Where CSE;; is the estimate of the j-th chromosome segment effect of animal i,
and summation is over all chromosome segments j. The chromosome segments are
identified by the dense marker haplotypes, €.g. Meuwissen et al. used 2-marker-
haplotypes to identify the segments. The estimates of the chromosome segments
are obtained from a relatively small data set, e.g. an experiment containing 1,000
or more genotypes and phenotypes animals. Chromosome segment effects are
not tested for their statistical significance. Such significance testing would
imply that most of the segment effects would be found non-significant and are set
to zero. It is expected that all the segments with no effect will on average have an
estimated effect that is close to zero, and it is the average (or summed) effect that
is of importance for equation [1]. Also, non-zero chromosome segments will often
be over-estimated or under-estimated, but on average also their effect will be
accurately estimated. Note that the estimation of the chromosome segment effects
relies on the presence of LD between the marker haplotypes and the QTL that lie
in-between the markers.

There will be a huge number of chromosome segments, typically 50,000 or more,
and these have to be estimated in a data set of limited size, say 1000 or 2000
phenotyped and genotyped animals. Traditional statistics can not be applied to
estimate all these effects, because there are not enough degrees of freedom to
estimate so many CSEs. Meuwissen et al. (2001) compared 4 alternative methods
1) Least Squares: this is the traditional statistics approach but with some model
selection step to reduce the number of effects to estimate. The chromosome
segments were fitted one by one and those increasing the log-likelihood by more
than 14 units, were assumed significant and were fitted simultaneously in the
model. This resembles the QTL mapping approach: first detect the most
significant QTL, and then fit only the most significant QTL in the MA-BLUP.
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2)BLUP: In the BLUP approach, all CSEs are fitted simultaneously, but the
degrees of freedom shortage is avoided by assuming that the CSEs all come from
a distribution of effects with mean 0 and equal variance.

3) GIBBS: In the Gibbs approach, the CSEs are also assumed to have a prior
distribution, but now the variance differs per position of the segment, i.e. in some
positions the effects have more variance and thus can be bigger than in others.
This approach was implemented by Gibbs sampling.

4) METROP: This approach is very similar to the Gibbs approach except that here
with some probability P there was no variance at all at a particular position of the
chromosome segments. This resembles the situation where there are no QTL at
this segment.

The approaches were tested in a computer simulation of 10 chromosomes of 100
cM each. Bach centimorgan had a micro-satellite marker at its beginning and end,
and a potential QTL position in the middle. Whether the QTL position was
explaining variation or not depended on whether there had been a mutation at the
QTL position or not. 1000 generations were sampled to create a mutation drift
balance and LD between the markers and the QTL. Next, in generations 1001 and
1002, a typical QTL mapping experiment was set up with 100 sires and 100 dams
mated to produce 2000 offspring. The parents and their offspring were all
genotyped and phenotyped and their data were used to estimate the CSEs. The
2000 animals in generation 1002 also obtained 2000 offspring in generation 1003,
which were only genotyped, and their EBV were predicted using equation [1].
Since in the simulation study the true breeding values were known, the accuracies
of these estimates were calculated and were: 0.36, 0.74, 0.80 and 0.84, for the
methods Least Squares, BLUP, Gibbs and Metrop, respectively.

Thus, the least squares approach, which resembles the QTLmapping/MAS
approach, yielded quite low accuracy probably because many of the QTL were not
significantly detected, and thus only a fraction of the total genetic variance was
used. The results for Gibbs, and Metrop show that quite high accuracies (similar to
that of a progeny test) are possible by genomic selection. These high-accuracy
EBV make the design of complete new breeding schemes possible, where
phenotypic recording does not need to precede the selection steps.

BREEDING SCHEMES

Effect of genomic information: Firstly, since it provides extra information about
the genetic value of animals, genomic information increases the accuracy of the
EBVs. This implies that it is mainly useful for traits where the accuracy of EBVs
is low in traditional breeding schemes: 1) traits with low heritability; 2) traits with
recording difficulties (expensive recordings, recording after slaughter, or disease
challenge testing, late in life recordings, and sex limited recordings). Secondly,
genomic information may be used to reduce the generation interval, since the
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genomic information can be recorded at very young age (even on embryos). This
effect of genomic information may be bigger than that on the accuracy of
selection, because accuracies are often already high in breeding schemes, whereas
a factor 2 reduction in generation interval implies a factor 2 increase in rate of
genetic gain. This reasoning resulted in the velogenetics schemes of Georges and
Massey (1991), where oocytes were harvested from in-uturo calves, invitro
matured and fertilised, selected based on markers, and implanted in recipient
cows. Velogenetics schemes reduced the female generation interval from the usual
minimum of 2 years to 6 months. Haley and Visscher (1998) took this idea to the
extreme in their Whizzo genetics schemes. In these schemes, in-vitro meiosis was
induced in embryos, followed by invitro maturation, and fertilisation, and
selection based on markers, after which the selection cycle was repeated. The
Whizzo genetics schemes could be run entirely in the lab, and the generation
interval depends on the lab techniques.

In conclusion, genomic information seems most useful for difficult or expensive to
record traits. Such traits could be recorded in an experiment together with dense
marker information, and CSEs could be estimated. Next, the commercial/elite
animals could be selected based on EBV; = ZCSE;;., ie. which does not require any
phenotypic recording. Use of genomic information will also result in reduction of
generation intervals, which may well be its biggest impact on current breeding
schemes. Substantial reductions are possible even with natural/conventional
reproduction, but the most dramatic increases in genetic gain will be obtained
when genomic selection is coupled to reproductive technologies that further
reduce the generation interval. In order to make genomic selection possible,
molecular genetics has made important advances recently in that genomes of
important livestock species are being sequenced or have been sequenced, which
makes large number of SNP markers available, and microarray technology has
made genotyping for >10,000 SNPs possible at affordable costs of about 400 US$
per animal, which is cheaper than most current testing procedures.
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