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Abstract

A new approach is described, for extracting and visualising structures in a data matrix Y in
light of additional information BOTH about the ROWS in Y, given in matrix X, AND about
the COLUMNS in Y, given in matrix Z. The three matrices Z–Y–X may be envisioned as
an “L-shape”; X(I × K) and Z(J × L) share no matrix size dimension, but are connected via
Y(I × J ). A few linear combinations (components) are extracted from X and from Z, and
their interactions are used for bi-linear modelling of Y, as well as for bi-linear modelling of
X and Z themselves. The components are de?ned by singular value decomposition (SVD) of
X′YZ. Two versions of the L-PLSR are described—using one single SVD for all components,
or component-wise SVDs after deBation.

The method is applied to the analysis of consumer liking data Y of six products assessed by
125 persons, in light of 10 other product descriptors X and 15 other person descriptors Z. Its
performance is also checked on arti?cial data.
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1. Introduction

1.1. A two-way table with two extra tables

Traditionally, good science demanded a one-to-one relationship between a cause and
a measurement. That tradition can now be a hindrance to the study of more complex
systems, which are characterised by many-to-many relationships, often hidden in big
data tables. To ?nd these requires humble, but aggressive explorative data analysis
with powerful structure extraction- and display-tools, not just traditional testing of
hypotheses.

It is common practice to organise empirical data in a two-way data table, Y. These
data may be interpreted in light of other descriptors of its rows, organised in data table
X with the same number of rows as Y. Good multivariate methods have been devel-
oped for relating two such tables to each other, for prediction and interpretation (see
e.g. Martens and Naes, 1989; Martens and Martens, 2001). For instance, if X and/or Y
have strongly inter-correlated columns, a method like the PLS Regression (Wold et al.,
1983) utilises this multi-collinearity as a stabilising advantage in a linear/bi-linear
model. In this journal the method was recently assessed (Elden, 2004), and applied,
e.g. to biotechnology data (Nguyen and Rocke, 2004).

However, the data table Y may also have descriptors of its columns, organised in
a third data table Z′ with the same number of columns as Y. The question is how
to utilise the information in all three matrices X;Y and Z eKciently, in a way that is
interpretable and statistically stabile.

1.2. Example of L-shaped input data tables

Consumer studies represent an application ?eld where such “L-shaped” data matrix
structures X;Y;Z are common: A set of I products has been assessed by a set of J
consumers, e.g. with respect to liking, with results collected in “liking” data table Y(I×
J ). In addition, each of the I products has been “measured” by K product descriptors
(“X-variables”), reBecting chemical or physical measurements, sensory descriptions,
production facts etc., in data table X(I ×K). Moreover, each of the J consumers have
been characterised by L consumer descriptors (“Z-variables”), comprising sociological
background variables like gender, age, income, etc., as well as the individual’s general
attitude and consumption patterns; these are collected in data table Z(J ×L). Relevant
questions could then be: Is it possible to ?nd reliable patterns of variation in the
liking data Y, which can be explained from both product descriptors X and from
consumer descriptors Z? Is it possible to predict how a new product will be liked by
these consumers, by measuring its X-variables? Is it possible to predict how a new
consumer group will like these products, from their background Z-variables?
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Consumer response data are of very low precision. With so noisy data it is im-
portant to have a modelling method that only extracts the most dominant, relevant
and reliable structures from the data: the number of model parameters to be estimated
independently from the response data Y must be low. The level of statistical valid-
ity of the obtained model parameters can be checked, e.g. by various cross-validation
/jack-kni?ng schemes, keeping diNerent consumers and/or products “secret”, in turn, for
model testing. This can also reveal outliers and gross errors in the data. For simplicity,
statistical validation will not be pursued here.

Moreover, consumer studies are wrought with methodological problems that may
give systematic errors of various kinds. Therefore, it is important to have eKcient
graphical displays to inspect and interpret the structures obtained from the data.

In the present case, Danish children’s liking of apples is being studied. Their response
to various apple types is termed Y. Chemical, physical and sensory descriptors of these
apple types are called X, and sociological and attitude descriptors on these children is
called Z. The purpose of the analysis is to ?nd patterns in these X=Y=Z data that are
causally interpretable and have predictive reliability.

In the following, matrices will be written in upper-case (e.g. X) letters, vectors in
lower-case (e.g. xk ; k=1; 2; : : : ; K) and scalar elements in italics (e.g. xik ; i=1; 2; : : : ; I ; k=
1; 2; : : : ; K); all vectors are column vectors unless otherwise speci?ed.

1.3. Modelling alternatives

Since X(I×K);Y(I×J ) and Z(J×L) have diNerent size dimensions, the Z-variables
cannot be modelled with X and Y by regression over I objects in today’s two-block
bi-linear model framework.

A two-step approach for using the Z-information is to fold the information from Z
with Y′ in order to give the Z-information a dimension I , common with Y and X.
KubberHd et al. (2002) ?rst estimated the reduced-rank regression coeKcient matrix
B′
Z;Y (I × L) from the mean-centred model Y′ ≈ Z · BZ;Y by PLSR, and secondly

regressed both Y and B′
Z;Y on X based on the linear model [Y;B′

Z;Y ] ≈ X · BX , in
another reduced-rank PLSR step. Thybo et al. (2003) used a similar two-step approach,
but in order to simplify the analysis, they replaced the regression coeKcient matrix B′

Z;Y
by the matrix of correlation coeKcients RZ;Y (I × L) between the I rows in Y and the
L columns in Z, correlated over J elements. In either case, the X=Y=Z interpretations
were meaningful. But the two-step procedures are cumbersome and have complicated
mean-centring properties.

Another approach could be to unfold the two-way Y(I × J ) into a vector y with
N = I · J elements, and submit this as regressand to a regression model with X and
Z as regressors, using the additive model yij = � +

∑K
k=1 xik�� +

∑L
l=1 zjl�l + fij.

This assumes independent X and Z contributions to y. In the present application that
would preclude consumer/product segmentation: A product property xik would then be
assumed to have the same impact for all consumers (“when an apple i is very red,
then it is very much liked by everybody”), and a consumer consumption descriptor
zjl would mean the same for all products (“when a person j says he particularly likes
red apples, then that person likes all the apples”). Moreover, collinearity between the
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X-variables and between the Z-variables would give estimation problems, if a full-rank
regression method had been used.

A multiplicative model like yij = � + (
∑K

k=1 xik��)(
∑L

l=1 zjl�l) + fij could be an
alternative. Here y is modelled as the bi-linear product between a linear combination
of the X-variables and a linear combination of the Z-variables. This model would
only allow one pattern of Y-relevant variation among the X-variables, de?ned by
��; k = 1; 2; : : : ; K , and one pattern of Y-relevant variation among the Z-variables, de-
?ned by �l; l = 1; 2; : : : ; L. That is an unnatural restriction, because consumers may
diNer in more than one way. A generalisation of this approach will be presented here:
Y is approximated by a bi-linear model, which is de?ned as the sum of the interactions
between several orthogonal linear combinations of X and of Z. These linear combi-
nations represent Y-relevant latent variables in X and in Z, de?ned according to the
PLS principle of maximising explained covariance. The present approach may be seen
as an extension of an earlier, iterative NIPALS-based method presented by Wold et al.
(1987). HSoskuldsson (2001) outlines other ways to combine three or more matrices
within the PLS framework. The ?rst author’s account of the development of the two-
block PLS regression is given in Martens (2001).

2. Materials and methods

2.1. Experimental input data

2.1.1. I = 6 products
The data are taken from Thybo et al. (2003). I =6 products were the apple cultivars

“Jonagold”, “Mutsu”, “Gala”, “Gloster”, “Elstar” and “GrannySmith”. All cultivars
were selected due to commercial relevance for the Danish market and due to the
fact that the cultivars were known to span a large variation in sensory quality (KSuhn
and Thybo, 2001). Gloster was chosen as a wine-red cultivar with particularly high
glossiness, Gala and Jonagold as red cultivars with 80–90% red Bushed surface, Mutsu
as a yellow–green cultivar and GrannySmith as a green and particularly round shaped
cultivar. GrannySmith was known to be a rather popular cultivar for some children,
due to its texture and moistness characteristics. Only apples with shape and colour
deemed representative for their cultivar were used.

2.1.2. K = 10 product descriptors X
Sensory pro>le descriptors: A panel of ten assessors was trained in quantitative de-

scriptive analysis of apple types as described in KSuhn and Thybo (2001). Conventional
statistical design w.r.t. replication and serving order was applied. The panel average
of a subset of the appearance, texture, taste and Bavour descriptors determined will be
used here: RED, SWEET, SOUR, GLOSSY, HARD and ROUND.
Chemical and instrumental product descriptors: Texture ?rmness was evaluated in-

strumentally by penetration (FIRM, INSTR.). Content of acid (ACIDS) and sugar
(SUGARS) were determined as malic acid and soluble solids, respectively. Based on
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prior theory on human sensation of sourness, the ratio ACIDS/SUGARS was included
as a separate variable (KSuhn and Thybo, 2001).

Together, the sensory, chemical and instrumental variables constituted K=10 product
descriptors, which will here be referred to as X(I × K) for the I = 6 products.

2.1.3. J = 125 consumers
The consumers were children aged 6–10 years (51% boys, 49% girls), recruited

from a local elementary school. A total of 146 children were tested and included in
the original publication (Thybo et al., 2003). For simplicity, only the J = 125 children
that had no missing values in their liking and background data are included in the
present study.

2.1.4. L = 15 consumer descriptors Z
First, each child was asked to look at a table with ?ve diNerent fruits (a red and a

green apple, a banana, a pear and an orange (mandarin)), and answer the questions:
“If you were asked to eat a fruit, which fruit would you then choose, and which fruit
would be your last choice?” The resulting responses will here be named “〈 fruit〉First”
and “〈 fruit〉 Last”, where 〈 fruit〉 is one of [Red Apple, Green Apple, Pear, Banana,
Orange or Apple]. (Summaries were later computed for apple liking: AppleFirst =
RedAppleFirst +GreenAppleFirst and AppleLast =RedAppleLast +GreenAppleLast.)
The child was also questioned about how often he/she ate apples, by having the fol-
lowing opportunities: “every day” (here coded as value 4), “a couple of times weekly”
(3), “a couple of times monthly” (2), “very seldom” (1); this descriptor is here named
“EatAOften”. (A few of the children responded “do not know” to how often he/she
ate apples. To reduce the number of missing values, this was for simplicity taken as
indicating very low apple consumption, and coded as 0.) In addition, the child’s gender
and age were noted. These two sociological descriptors were used, together with the
attitude variables 〈 fruit〉 First and 〈 fruit〉 Last and eating habit-variable EatAOften,
as L = 15 consumer background descriptors Z(J × L) for the J = 125 children.

2.1.5. Product liking Y
Then each child was asked to express the liking of the appearance of the six apple

cultivars, using a ?ve-point hedonical facial scale: the scale expressed: 1 =“not at all
like to eat it”, 2 =“not like to eat it”, 3 =“it is okay”, 4 =“like to eat it”, 5 =“very
much like to eat it”. One apple at a time was shown to the child to avoid that the child
concentrated on comparing the appearances. All samples were presented in randomised
order. The resulting liking data for the I = 6 products × J = 125 consumers will here
be termed Y(I × J ).

2.1.6. The three-block input data
Fig. 1 depicts the actual data in this example, with the three input data tables or

“blocks”, product descriptors X(I ×K), liking data Y(I × J ) and consumer descriptors
Z(J × L). Since X and Z′ each share one of the dimensions with Y, and none with
each other, the data tables form an “L”. The new PLSR method to be presented
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Fig. 1. Overview of input data tables X; Y and Z. X: 10 sensory and chemical/instrumental descriptors
(standardised) of six apple types; dark=light = −1:8=1:6: Y: 125 children’s liking (1–5) of six apple types;
dark=light = 1=5: Z′ : 15 background descriptors (standardised) for 125 children; dark=light = −2:5=3:6.

is therefore named “L-PLSR”. In this particular data sets the input dimensions are
X(6 × 10);Y(6 × 125) and Z′(15 × 125).

2.1.7. Software
The software for L-PLSR and correlation loadings was written in MatlabTM (www.

mathworks.com). The remaining plots were drawn using The UnscramblerTM

(www.camo.com).

2.2. Theory

2.2.1. Pre-processing: mean centring and re-scaling
Since the K input variables in X(I × K) are given in units with diNerent oNsets,

they are brought to a common origin by mean centring over the I rows. Likewise, the
L input variables in Z(J × L) are brought to a common origin by mean centring over
the J rows:

X0 = X − 1 �x′; Z0 = Z− 1 �z′: (1a)

mailto:www.mathworks.com
mailto:www.mathworks.com
mailto:www.camo.com
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Y(I × J ) is then to be modelled from interactions of the mean centred X- and Z-data.
The column- and row-means in Y will automatically be ignored, since these mean
vectors will be orthogonal to X0 and Z0, respectively. Therefore Y is subjected to
conventional double mean-centring:

Y00 = Y−1I �y′
:J − �yI:1′

J + 1I VVy1′
J ; (1b)

where �yI:(I × 1) contains the mean for each of the I rows (the “average consumer”, in
plots named “RowsMean”), �y:J (J × 1) contains the mean for each of the J columns
(the “average product”, “ColsMean”), and VVy is the grand mean of Y.

The column- and row-mean vectors �y:J and �yI: in this data set represent the average
liking score for each of the I products and for each of the J consumers, respectively.
They will be studied graphically as if they represented an extra “Y-column” (the “av-
erage consumer”) and “Y-row” (the “average product”) in the ?nal model overview.

Since the diNerent X-variables are given in units with very diNerent ranges, they
will be rescaled, e.g. by conventional standardisation to a common total initial standard
deviation of 1. The Z-variables will likewise be standardised, while the Y-data are left
unscaled.

2.2.2. Model overview
Fig. 2 gives an overview of the matrices involved in the three-block bi-linear model.

The three input matrices are shown as ?lled rectangles, the main and additional
parameter matrices as dense and dotted rectangle outlines, respectively. The L-PLSR
estimation algorithm is outlined by arrows.

The L-PLSR is primarily intended to reveal patterns in Y that correspond to patterns
in both X and Z, after mean centring. This restrictive condition is intended to act as
an eKcient ?lter against random noise in the Y— on the condition that both X and
Z span the interesting variation types. If such X=Y=Z patterns are found, they may be
used for prediction of future Y from more easily available information X and Z, as
well as for graphical interpretation of the likely X=Y=Z causality.

Note how X and Z share no size dimension; Y acts as an “instrumental matrix”
to connect them. In the present data example, the goal is to ?nd related Y-relevant
patterns among the product descriptors X and among the consumer descriptors Z, and to
approximate Y from these. The random noise in consumer liking data Y is expected to
be high, but it is hoped that the restrictive L-PLSR model will stabilise the modelling.
It is assumed that both the K variables in X and the L variables in Z have been
chosen so that they have a good chance of spanning the interesting types of variations
in Y. If such X=Y=Z relationships in fact do exist, then the method should be able
to reveal consumer segments with diNerent product preference patterns, and indicate
which product properties and which consumer descriptors point to these systematic
diNerences.

2.2.3. Three-block bi-linear structure model
Full-rank interaction model of Y: A rather restrictive approximation model may be

written as

Y00 = X0CZ
′
0 + F; (2)
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Fig. 2. L-PLS regression method. Mean-centred input data Y00; X0 and Z0; model structure (weights VX

and VZ , scores TX and TZ ) and estimation algorithm: singular value decomposition(s) of X′
0Y00Z0 (with

or without deBation) yield VX and VZ which de?ne scores as TX = X0VX and TZ = Z0VZ . For graphical
display, correlation loadings [RX;TX ; RY;TX ] are obtained by simple correlations between [X;Y] and TX , and
[RZ;TZ ; RY;TZ ] by simple correlation between [Z;Y′] and TZ .

where matrix C(K × L) represents the Y-relevant X=Z interactions and F(I × J ) the
Y-residuals. If the K X-variables had been linearly independent and the L Z-variables
had been linearly independent, the interactions parameters might have been estimated by
ordinary least-squares regression. However, usually neither X nor Z have full column
rank, and full-rank least squares solution of Eq. (2) then leads to numerical problems
or statistical variance inBation.
Reduced-rank bi-linear model of Y: Assume instead a reduced-rank version of Eq.

(2)

Y00 = X0CAZ′
0 + FA; (3a)

where, for simplicity, only the A most important underlying variation types are be-
ing modelled, by CA(K × L), leaving the rest as unmodelled residuals in FA(I × J ).
The elements in CA are to be estimated, to rank A, by making the elements in FA

“small” in some way; the details will depend on the methodology chosen. Here it
will be implemented as an extension of the well-established two-block rank-reduced
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bi-linear regression modelling (see e.g. Martens and Martens, 2001), in terms of A
latent variables (linear combinations or components) from X and from Z:

TX = X0VX;A; TX = Z0VZ;A; (3b)

where VX;A(K ×A) and VZ;A(L×A) are the component weight matrices, and TX (I ×A)
and TZ(J × A) are the resulting component score matrices in X and Z, respectively.
The bi-linear X=Z model of Y in Eq. (3a) may then be rewritten as

Y00 = TXDAT′
Z + FA; (3c)

where the elements DA(A × A) describe the Y-relevant interaction structures between
X and Z. The number of components from both X and Z is assumed to be the same;
this is done for convenience and is not a necessity.

The component-wise estimate of diag(DA) at rank A is based on the model Y00 =
tX;ada;at′Z;a + Fa; a = 1; 2; : : : ; A:

da;a = (t′X;atX;a)
−1t′X;aY00tZ;a(t′Z;atZ;a)

−1; (3d)

while a full matrix, including the non-diagonal elements, is

DA = (T′
XTX )−1T′

XY00TZ(T′
ZTZ)−1: (3e)

If DA is found to be highly non-diagonal, it may be further diagonalized by svd, with
a corresponding rotation of TX and TZ but this is not pursued here.

By inserting the de?nitions of TX and TZ (Eq. (3b) into Eq. (3c)), the de?nition of
the X–Z interaction matrix CA(K × L) in Eq. (3) is obtained:

CA = VX;ADAV′
Z;A (3f)

with Y-residuals

FA = Y00 − TXDAT′
Z = Y00 − X0CAZ′

0: (3g)

Reduced-rank interaction model of X and Z: The A components from X and Z
may be used to model X and Z themselves:

X0 = TXP′
X + EX;A; Z0 = TZP′

Z + EZ;A; (4a)

where the X- and Z-loadings PX (K × A) and PZ(L× A) are obtained by projection of
X and Z on their respective score matrices

PX = X′
0TX (T′

XTX )−1;PZ = Z′
0TZ(T′

ZTZ)−1 (4b)

and the corresponding residuals EX;A(I × K) and EZ;A(J × L) obtained as

EX;A = X0 − TXP′
X ; EZ;A = Z0 − TZP′

Z : (4c)

Extending the interaction model of Y with additive terms: Even though the present
focus is on extracting Y-structures that are seen both in X AND Z, it is of course
possible that Y may have some variation that is seen only in X OR in Z. One way to
model that is to assume these additive eNects to be picked up by the latent variables
already obtained from X and from Z. Eq. (3c) may then be extended to

Y00 = TXDAT′
Z + TXQ′

X +QZT′
Z + FA: (5)

The additive loadings, QX (J ×A) and QZ(I ×A) may, e.g. be estimated after removal
of the interaction eNect, which is the primary aim. Let GA = Y00 − TXDAT′

Z : QX
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and QZ may be obtained by ordinary least-squares regression of GA on TX and of
G′

A on TZ , or by projection of GA on TX and TZ simultaneously, after unfolding Y
into N = I · J “observations”. This will not be pursued here. Instead, the relationships
between Y and the latent variables from X and Z will be displayed via their correlation
loadings (Martens and Martens, 2001), i.e. conventional product–moment correlations
between input data and latent variables.
Display of results as correlations between data and model: The X-loadings PX in

Eq. (4b) may be expressed as a matrix of unit-free correlations RX;TX (K ×A) between
the X-variables and the X-score vectors TX , as illustrated in Fig. 2:

RX;TX : rk;a =
x′

0; k tX;a
(x′

0; kx0; k)1=2(t′X;atX;a)1=2 : (6a)

Due to the analogy to the estimated X-loadings (Eq. (4c)), they are called “correla-
tion loadings for the X-variables”. Likewise, the Z-loadings PZ in Eq. (4b) may be
expressed as matrix of unit-free correlations RZ;TZ (L×A) between the Z-variables and
the Z-score vectors TZ;A

RZ;TX : rl;a =
z′
0; ltZ;a

(z′
0; lz0; l)1=2(t′Z;atZ;a)1=2 : (6b)

These may be used to study how the input variables in X and Z are modelled by their
latent variables.

Similarly, the modelling of Y can be studied. The columns in Y are correlated to
the X-scores TX , by RY;TX (J × A), de?ned by

RY;TX : rj;a =
y′

00; jtX;a
(y′

00; jy00; j)1=2(t′X;atX;a)1=2 : (6c)

The correlation coeKcients in RY;TX reBect TZD′
A (for model (3c)) or TZD′

A +QX (for
model (5)). Likewise, the rows in Y are correlated to the Z-scores TZ , by RY;TZ (I×A),
de?ned as

RY;TZ : ri;a =
y00; itZ;a

(y00; iy′
00; i)1=2(t′Z;atZ;a)1=2 : (6d)

RY;TZ reBects TXDA (for model 3c) or TXDA +QZ (for model (5)).
The row and column means in Y, here representing the “average consumer’s” liking

of the I products, �yI:(I × 1), and the J consumers’ liking of the “average product”,
�y:J (J × 1), were removed in Eq. (1b). They may be correlated to the latent variables
from X and Z, respectively. Hence, in this case, the hypothetical “average consumer”
(“RowsMean”) may be related to the latent variables from TX;A

rY;RowsMean : ra =
�y′
: I tX;a

( �y′
: I �y: I )1=2(t′X;atX;a)1=2 (6e)

and the “average product” (“ColsMean”) may be related to TZ;A

rY;ColsMean : ra =
�y′
J:tZ;a

( �y′
J: �yJ:)1=2(t′Z;atZ;a)1=2 : (6f)
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2.2.4. PLS estimation of weights for the latent variables
The arrows in Fig. 2 show that the chosen algorithm starts with the X- and Z-weights

VX;A(K×A) and VZ;A(L×A). In the literature, two diNerent ways to use Herman Wold’s
(1982) PLS-principle in two-block X=Y modelling have been developed, apparently
somewhat independently of one another. The same two approaches may be used also
for the three-block X=Y=Z modelling.
Simultaneous extraction of all the components: The two-block PLS method of

Bookstein et al. (1996) is most recent, but simplest. It extracts all the components in
one singular value decomposition (SVD) of the X=Y covariance matrix: SVD(X′

0Y0).
This means that if there is only one Y-variable, it can only extract one latent variable.
This stops the method from being useful in some cases, but for the present type of
data with many Y-variables, it may be good. A three-block extension of this approach
is simply to employ SVD(X′

0Y00Z0), i.e.

UXSU
′
Z = X′

0Y00Z0; (7a)

where, for M = min(K; L);UX (K × M) and UZ(L × M) are the orthonormal left- and
right-hand singular vectors of (X′

0Y00Z0), and S(M × M) is the diagonal matrix of
singular values.

To avoid collinearity problems and to simplify the graphical interpretation, only the
A ?rst, reliable components are used:

VX = [uX;a; a = 1; 2; : : : ; A]; VZ = [uZ;a; a = 1; 2; : : : ; A]: (7b)

Equivalently, the X-weights VX may be obtained as the A ?rst eigenvectors of the
Y=Z-weighted X-covariance X′

0(Y00Z0Z′
0Y

′
00)X0, and the Z-weights VZ as the A ?rst

eigenvectors of the Y=X-weighted Z-covariance Z′
0(Y

′
00X0X′

0Y00)Z0.
This solution has the properties that the weights are orthogonal, but not the scores,

V′
XVX = I; V′

ZVZ = I;T′
XTX �= diag; T′

ZTZ �= diag:

Sequential extraction of the components: PLS Regression by Wold et al. (1983) is
the two-block PLS method most commonly used in, e.g. chemometrics. It employs a
sequence of singular value decompositions of deBated X=Y covariances, SVD(X′

a−1Y0);
a=1; 2; : : : ; A. Each time only the >rst left-hand singular vector is retained (HSoskuldsson,
1988) as basis vectors for the weights VX;A. These orthonormal basis vectors WX =
[wX;a; a = 1; 2; : : : ; A] are called loading weights. The three-block extension of this
two-block PLS Regression likewise requires deBation of X; it employs SVD(X′

a−1Y00

Za−1); a=1; 2; : : : ; A. The estimation algorithm therefore repeats Eqs. (3b,c) and (4c,d)
for each component:

For a = 1; 2; : : : ; A:

UXSU
′
Z = X′

a−1Y00Za−1 (SVD) (8a)

wX;a = uX;1; wZ;a = uZ;1 (use only the ?rst singular vector)

tX;a = Xa−1wX;a; tZ;a = Za−1wZ;a [(≈ Eq: (3b))] (8b)

pX;A = X′
a−1tX;a(t

′
X;atX;a)

−1; pZ;A = Z′
a−1tZ;a(t

′
Z;atZ;a)

−1 [(= Eq: (4b))]
(8c)
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Fig. 3. Summary of input data Y. Mean (abscissa) vs. total standard deviation (ordinate). (A) Row mean
�yI: vs. row std. dev. of six apple types (statistics over 125 children). (B) Col. mean �y:J vs. col. std. dev. of
125 children (statistics over six apple types).

EX;a = Xa−1 − tX;ap′
X;a; EZ;a = Za−1 − tZ;ap′

Z;a [(= Eq: (4c))] (8d)

Xa = EX;a; Za = EZ;a; (8e)

end
WX = [wX;a; a = 1; 2; : : : ; A]; WZ = [wZ;a; a = 1; 2; : : : ; A];

TX = [tX;a; a = 1; 2; : : : ; A]; TZ = [tZ;a; a = 1; 2; : : : ; A];

PX = [pX;a; a = 1; 2; : : : ; A]; PZ = [pZ;a; a = 1; 2; : : : ; A]:

In analogy to the PLSR, the weights for the equivalent score expressions in Eqs.
(3a,b) and Fig. 2 may then be obtained by

VX =WX (P′
XWX )−1; VZ =WZ(P′

ZWZ)−1: (8f)

This solution has the properties that the scores are orthogonal, but not the weights,

T′
XTX = diag; T′

ZTZ = diag; V′
XVX �= diag; V′

ZVZ �= diag:

3. Results

3.1. Input data

Fig. 1 depicted the input data tables X;Y and Z. The grey-scale of Y reBects the
original 5-point liking scale. X has been standardised in order to make its diNerent
types of descriptors comparable, i.e. each column has been mean centred and rescaled
to a total initial standard deviation of 1. Z has likewise been standardised in order to
make its diNerent types of descriptors comparable.

Fig. 3 shows some simple statistics of the liking data. Fig. 3(A) shows the arithmetic
row mean ( �yI ., abscissa) of each of the products in Y (each of the six apple types),
plotted against their total initial standard deviations (ordinate). It shows that, on the
average, product Jonagold is the most liked, while Mutsu is the least liked. The
childrens’ liking diNers most for Granny Smith.
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Fig. 3(B) shows the corresponding column summaries: the abscissa shows the mean
�y:J for each of the consumers in Y (each of the 125 children) while the ordinate shows
their corresponding standard deviations. The ?gure shows that children with low mean
liking diNerentiate more between the diNerent apple types. A few children do not
diNerentiate at all in their reported data (std. dev. = 0).

3.2. L-PLS Regression of Y on X and Z

The standardized X and Z data were submitted to L-PLSR modelling of the double-
centred data in Y, according to the structure model outlined in Fig. 2, using the esti-
mation algorithm with orthogonal component scores (Eq. (8a–f)).

Cross-validation with 6 × 125 segments (not shown here) indicated the ?rst PLS
component (“PC”) to be clearly valid, while the later ones had low predictive ability.
The second PC was found to span primarily one single product, but in an interpretable
way, so it was included in the results to be presented.

Fig. 4 shows the results for the ?rst two PCs. Figs. 4(a)–(d) show separate sets of
parameters, while Fig. 4(e) plots all of them on top of each other, which is possible,
since correlation loadings are unit free.
Product descriptors X: Fig. 4(a) shows the main patterns of the sensory, instrumental

and chemical product descriptors, in terms of correlations RX;TX between the K = 10
columns in X and the ?rst A=two X-score vectors in TX . The horizontal dimension
is seen to span the sensory contrast between SOUR and SWEET, and the chemical
contrast between the ACIDS/SUGARS ratio and the SUGAR content. Sensory RED
colour is correlated with SWEET apples. The vertical dimension mainly contrasts
properties like sensory HARD and instrumentally FIRM against sensory ROUND
shape and high content of ACIDS and SUGARS.
Consumer descriptors Z: Fig. 4(b) shows the main patterns of the consumer back-

ground descriptors, in terms of correlations RZ;TZ between Z and the ?rst two Z-score
vectors TZ . The horizontal dimension spans a tendency to choose the green apple >rst
and the red apple last (GreenAFirst, RedALast), against the tendency to choose the
red apple >rst and the green apple last. Vertically, a contrast between choosing pear
>rst and banana last against choosing banana >rst and pear last. The purely socio-
logical variables (gender, age, how often apples are eat) are not particularly evident in
the result, although gender (coded as being girl) is slightly associated with choosing
green apple >rst, pear >rst and banana last.
Consumer liking of the products Y: Fig. 4(c) shows the main, product-related pat-

terns of the consumer w.r.t. liking, in terms of the correlations RY;TX between Y and
TX . Most of the 125 children are gathered towards either end of the horizontal dimen-
sion. The second, vertical dimensions is much less extensive, and spans fewer children.

The “average consumer” (“RowsMean”= �yI:, the arithmetic average over the columns
Y, i.e. abscissa in Fig. 2(a)) is seen to fall to the left of the origin; however, few
children fall in the vicinity of RowsMean. Hence, this average consumer does not
seem particularly interesting.
Product liking by the consumers, as seen from X and from Z: Fig. 4(d) shows the

main patterns of the six products. The dotted lines point to correlations RY;TZ (o, with
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Fig. 4. L-PLS regression; correlation loadings for PCs a = 1 (abscissa), a = 2 (ordinate). (A) 10 product
descriptors X correlated to X-scores TX (RX;TX ). The two components describe 42% and 36% variance in
X0; (B) 15 consumer descriptors Z correlated to Z-scores scores TZ (RZ;TZ ). The components describe 12%
and 10% variance in Z0; (C) 125 Y-variables (children’s liking Y) correlated to X-scores scores TX (RY;Tx).
The components describe 16% and 1% variance in Y00; (D) six Y-objects (apple types Y′) correlated to
Z-scores scores TZ (RY;TZ ; 0) and six X-objects (apple types X′) correlated to X-indicator matrix IX (RI;Tx ,*);
(E) all correlation loadings plotted together. The dotted ellipses represent 50% and 100% explained variance,
respectively.
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suKx “L” for “Liking”) between Y′ and the Z-scores TZ . The solid lines (*, with
suKx “SC” for “Sensory-Chemical”), point to an alternative product representation,
namely the correlation coeKcients between the identity matrix I (I × I), and the two
?rst X-score vectors TX , i.e. the partial leverages in X (Martens and Martens, 2001).
The X- and Z-patterns point in general in the same directions: The horizontal dimen-
sion spans the contrast between Granny Smith and the other products, mainly Gala,
Gloster and Jonagold. The vertical dimension spans the contrast between Elstar and
the other products. The correlations RY;TZ between Y′ and the Z-scores TZ are rather
weak, indicating that the variations in the second dimension is weaker than in the ?rst
dimension.

The “average liking of apples” (“ColsMean” = �y:J , the arithmetic average over the
rows in Y, i.e. abscissa in Fig. 2(b) is seen to fall just to the right of the origin. Hence,
the main patterns found in the double-centred liking data do not seem to reBect the
children’s general liking of apples.
Overview of the L-PLSR solution: Fig. 4(e) combines Figs. 4(a)–(d). In the hor-

izontal dimension product GrannySmith is seen to be particularly SOUR and not
SWEET; it has high ratio ACID/SUGARS and low level of SUGARS. It is also
HARD and not RED. The products Gala, Gloster and Jonagold appeared to display
the opposite tendency.
GrannySmith is seen primarily to be liked by children who were observed to choose

green apple >rst and red apple last, not by children who were observed to choose red
apple >rst and green apple last. Again, products Gala, Gloster and Jonagold seem to
display the opposite of this tendency.

In the vertical dimension, product Elstar is seen to be particularly round, with
high levels of both ACIDS and SUGARS, but not instrumentally FIRM and sen-
sory HARD; nor was it GLOSSY. On the contrary, the products Mutsu, Gloster and
Gala appeared to be a little more FIRM and GLOSSY, with less SUGARS and
ACIDS than the others.

Product Elstar seems primarily to be liked by children who chose banana >rst and
pear last, and less liked by children who chose pear >rst and banana last. In contrast,
e.g. Mutsu seemed to be associated with the liking of children who chose pear >rst.
Close inspection of the input data (Fig. 1) con?rms all of these conclusions, but they
were not easy to see directly from the raw data.

The relative size of the components in X and Z were

T′
XTX =

[
21 0

0 17

]

and

T′
ZTZ =

[
219 0

0 170

]
;

respectively. This shows that in both X and Z the relative importance of the two ?rst
components was about the same. The full kernel matrix in the model equation (3c),
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obtained by Eq. (3f), was

DA =

[
0:171 0:001

0:012 0:055

]
:

Here, the ?rst component is seen to be clearly the most important one in Y. The almost
diagonal structure shows that the two phenomena modelled are well separated in both
X and Z, so in this case there was no need for further diagonalization of DA.

4. Discussion

The present results indicate that PLS modelling with latent variables in two or more
dimensions (Wold et al., 1987) is useful and therefore deserves more attention. Fig. 4
illustrated a particular property of the L-PLSR, in that although the X- and Z-variables
share no physical matrix size-dimension, and therefore cannot be correlated directly to
each other, they have become connected via Y. For instance, RED (a column with six
numbers from X) is seen to be positively related to RedAFirst (a column with 125
numbers from Z). Likewise HARD (from X) and BananaLast (from Z) are positively
related. The observed associations seem to make sense in terms of common language
and background knowledge.

In general terms PC1 could be interpreted as a general sour-and-green vs. sweet-and-
red pattern of variation between the apple cultivars. The PC2 may be interpreted as
spanning the diNerence between a hard, pear-like texture and a soft, more banana-like
texture.

Children who would choose red apples >rst, tended to choose green apples last,
and vice versa. They distinguished the green GrannySmith and Mutsu from the other,
more red apples. Children who would choose banana >rst tended to choose pear last,
and vice versa. As expected, these children distinguished the very soft (“banana-like”)
Elstar from the others, primarily from the more hard, more bland, yellow-green (more
“pear-like”) Mutsu.

The purely sociological Z-descriptors of the consumers (gender, age) did not give
much relevant information about the consumer liking in this case. The strongest cor-
relation between e.g. gender and liking for any of the apples was only 0.07.
Assessment of conclusions from the L-PLSR modelling. With a relatively complex

modelling tool like the L-PLSR, it is important to verify the main aspects of the
interpretation by plotting the raw data. Some examples of this are shown in Fig. 5.
Product liking Y: Fig. 5(a) shows the input data for comparing the liking response

for the most extreme products (liking GrannySmith vs. liking Jonagold). With only ?ve
response levels possible, many data points are superimposed and the pattern diKcult
to see. But their raw liking data are clearly negatively correlated (r = −0:29 over the
125 subjects), as expected.
Liking Y vs. consumer background Z. Fig. 5(b) relates liking of the green apple

GrannySmith to the background response green apple >rst. There is a clear tendency
(r = 0:52 over 125 subjects) that if children chose green apple ?rst, they reported that
they liked GrannySmith.
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Fig. 5. Checking conclusions in the raw data: (A) A negative relation between rows in Y: Liking for the two
most extreme products, yJonagold (abscissa) vs. yGrannySmith(ordinate). Lines: Regression between ordinate and
abscissa, r = correlation coeKcient. (B) A positive relation between columns in Z and Y′: Choosing green
apple >rst, zGreenAFirst (0 or 1, abscissa) vs. the reported liking of apple type GrannySmith, yGrannySmith(1–5,
ordinate) for the 125 children. (C) A negative relationship between rows in standardized X: Row xJonagold
(abscissa) vs. row xGrannySmith (ordinate). (D) A weak relations between columns in X: Physical descriptor
xFIRM;INSTR (abscissa) vs. the sensory descriptor, xSOUR (1–5, ordinate) for the six apple types. SuKx “SC”
means “sensory-chemical”.

Product descriptor rows in X: Fig. 5(c) shows the standardized sensory and chemical
variables for the two most extreme products, GrannySmith and Jonagold. Again, these
two products are seen to be described quite opposite; Jonagold is SWEET, RED and
high in SUGARS, while GrannySmith has high ACIDS/SUGARS ratio, is SOUR,
HARD and ROUND, and vice versa. The r is −0:72 between these two rows of 10
standardized X-variables.
Product descriptor columns in X: Fig. 5(d) shows the input data for the sensory

descriptor SOUR and the instrumental descriptor FIRM,INSTR. As expected from the
L-PLSR model, these two variables are almost orthogonal, with r =0.07 over the six
products.

So, the conclusions from the L-PLSR have been con?rmed. But which properties
of the products were really decisive in causing these patterns in the childrens’ liking
of the appearance of the apples? Such a causal analysis cannot be completed on the
basis of this empirical study alone, particularly when only limited range of products
and consumers were involved.

But at least the analysis has revealed two interpretable patterns of variation in
the double-centred liking data. On this basis one may segment the consumers into
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groups, distinguishing, e.g. all the children in the left- and right-half of Fig. 5(c)
as “likers of red, sweet, soft” and “likers of green, sour, hard” (or “GrannySmith
likers”).

The present centring of the data removed the children’s diNerences in general lik-
ing of apples, so the background variables AppleFirst and EatAOften correlated only
weakly to the obtained model in Fig. 4, as expected. In general, it is advisable to check
the eNect of the double centring of the Y-data used for the L-PLSR in Fig. 4. In a sep-
arate model, the liking data Y and RZY (the I ×L correlations of consumer descriptors
Z to Y′) were regressed on the product descriptors X. The results are slightly diNerent,
as expected with the diNerent mean-centring approach; the results of this were detailed
by Thybo et al. (2003).
Simultaneous estimation of all the L-PLSR components: The alternative L-PLSR

method, based on a three-block extension of Bookstein’s two-block PLS modelling (Eq.
(7a,b), was also tested for these input data. For this simultaneous L-PLSR analysis,
the X-,Y- and Z-data were pre-processed just like for the sequential L-PLSR analysis.
The results were almost indistinguishable from those in Fig. 4, and therefore they will
not be reported here. The only apparent diNerence was a slight rotation of PC # 2,
reBecting the fact that the score vectors TX and TZ are not completely orthogonal in this
method.
Control of the L-PLSR method with arti>cial data: The Appendix A and Fig. 6

show that the L-PLSR method and software used for obtaining Fig. 4 give per-
fect representation of arti?cial, noise-free data constructed according to the model in
Eq. (3c).

5. Conclusions

A theory and two estimation algorithm versions have been presented for the “L-PLS
regression”, where Y is modelled by the bi-linear interactions of latent variables from
both X and Z. It gave an interpretable overview of rather complicated and noisy empir-
ical data, and performed as expected. After mean centring, two patterns of co-variation
were found in the present data—a green-and-sour vs. red-and-sweet pattern, and a hard
vs. soft pattern.

However, further work is called for. The relative merits of the two L-PLSR versions
with and without deBation need further study. The eNects of the row- and column-means
in Y also need further investigation.
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Appendix A.

A.1. L-PLSR analysis of arti>cial, noise-free data

Fig. 6 demonstrates the arithmetic functionality of the L-PLSR method, based on
arti?cial, noise-free X;Y and Z data with rank A=2: Bi-linear “liking” data Y00 were
constructed according to Eq. (3c) for I = 6 “products” and J = 125 “consumers”, as
a sum of two latent variables with random normally distributed (“randn”) X-scores
TX = randn(6; 2) and random normally distributed Z-scores TZ = randn(125; 2) :Y00 =
TXDAT′

Z , with DA=I. The ?nal, error-free liking Y-data were generated by adding ran-
dom row oNset for the products, yr =randn(I; 1), and column oNsets for the consumer,
yc = randn(J; 1) :Y = Y00 + 1y′

c + yr1′.
Product descriptor data X were then constructed for K =10 “descriptors” as lin-

ear combinations of these two latent variables’s X-scores TX , with random X-loadings
PX =randn(10; 2) :X=TXP′

X . Consumer descriptor data Z were conversely constructed

Fig. 6. L-PLSR solution for arti?cial, noise-free data: X; Y; Z data generated from two latent variables.
Xc: columns (product descriptors, ×) in X. Yr ;Yc: rows (products, o) and columns (consumers,•) in Y: Zc:
Columns (consumer descriptors, ∇) in Z: Xr : rows (products, *) in X (partial leverages). RowsMean and
ColsMean = �yI: and �y:J from Eq. (1b).
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for L = 15 descriptors as linear combinations of these two latent variables’ Z-scores
TZ , with random Z-loadings PZ = randn(15; 2) :Z0 = TZP′

Z .
These arti?cial X=Y=Z data were analysed like the real data, with results summarised

in Fig. 6, comparable to Fig. 4(e). The 10 “product” descriptors are represented by
rX;TX ;a for a=1 (abscissa) and a=2 (ordinate). They are denoted by Xc〈column#1 : 10〉,
the 15 “consumer descriptors” (rZ;TZ ;a) are denoted Zc〈column#1 : 15〉, the six products
liking (rY;TX ;a) are denoted Yr〈row#1 : 6〉, while the 125 consumers’ liking (rY;TZ ;a) are
simply shown as 125 black dots. The product score con?guration in X(rI;TX ;a) is shown
as Xr〈row#1 : 6〉. As before, the mean consumer’s liking is called RowsMean, and the
mean product’s liking ColsMean.

The double-centred Y-data were perfectly ?tted after two PCs (even in the element-
by-element cross-validation sense). The ?gure shows, as expected, the 125 consumer
columns in Y(•) to form a perfect ellipse with multiple r2 = 1 (100% explained vari-
ance), together with the column indicators in X and Z, Xc and Zc, and the row
indicators in Y;Xr . This demonstrates that the L-PLS regression formalism works as
expected.

The Y rows (Yr) and the X rows (Xr) point in almost identical directions. However,
since the X indicators Xr are intended to reveal uniqueness among the samples, they
do not extend as far as Yr (dotted), which show 100% ?t for these arti?cial data, in
contrast to the real data.

The column and row means in Y, RowsMean and ColsMean, are seen to correlate
weakly with the latent variables; this ?t is incidental.
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