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SUMMARY

Multiblock and hierarchical PCA and PLS methods have been proposed in the recent literature in order to
improve the interpretability of multivariate models. They have been used in cases where the number of variables
is large and additional information is available for blocking the variables into conceptually meaningful blocks. In
this paper we compare these methods from a theoretical or algorithmic viewpoint using a common notation and
illustrate their differences with several case studies. Undesirable properties of some of these methods, such as
convergence problems or loss of data information due to deflation procedures, are pointed out and corrected
where possible. It is shown that the objective function of the hierarchical PCA and hierarchical PLS methods is
not clear and the corresponding algorithms may converge to different solutions depending on the initial guess of
the super score. It is also shown that the results of consensus PCA (CPCA) and multiblock PLS (MBPLS) can be
calculated from the standard PCA and PLS methods when the same variable scalings are applied for these
methods. The standard PCA and PLS methods require less computation and give better estimation of the scores in
the case of missing data. It is therefore recommended that in cases where the variables can be separated into
meaningful blocks, the standard PCA and PLS methods be used to build the models and then the weights and
loadings of the individual blocks and super block and the percentage variation explained in each block be
calculated from the results. 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the invention of the NIPALS (non-linear iterative partial least squares) method, principal
component analysis (PCA) and partial least squares or projections to latent structures (PLS) have
become very popular as methods to model and analyze large multivariable collinear data sets.
Figure 1 shows the well-known arrow scheme of the PCA method, which is presented here for
comparing it with the multiblock extension of PCA. The NIPALS algorithm corresponding to this
figure is given in Appendix I.1. A tutorial on PCA and some chemical examples can be found in
Reference 1.

Figure 2 shows the arrow scheme for the PLS method, which is also presented here for comparing it
with multiblock extensions of the method. The algorithm is given in Appendix I.2. A data matrix with
descriptorsX and a data matrix of responsesY of several objects are represented by their scorest and
u. The corresponding weightsw andq are obtained by multiplying the scores through the specific
matrix. Weightw is normalized to length one. New scores are obtained from the weights. This is
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repeated until convergenceof t. Loadingsp are calculatedfor the deflation. Geladi described the
history of PLS and its enormousimpact on the chemometrics world.2 Tutorials on PLS have
appeared3,4 andseveral authorshavetried to describe themathematical andstatistical aspectsof the
method.5–8

The sizesof the scoreand weight vectors in PCA and PLS are undefined with respectto a
multiplicativeconstant, c, astw = (tc)⋅(w/c). Henceit is necessaryto anchorthesolution in someway.
In thestandard PCA andPLSalgorithmsusually theweights(or loadingsfor PCA) aresetto length
one.1 Thenthesquaredlength of thescoresequalsthevariationexplainedby theprincipalcomponent.

In recent yearsseveralPCA andPLSmethodshavebeenintroducedwhich break the descriptors
and/orresponsesinto severalblocks to improve the interpretation of the models. Thesemultiblock
methodshavebeenusedin caseswhere thenumberof variablesis largeandadditional informationis
available for blocking the variables into conceptually meaningful blocks. Applications include
modelingandmonitoring of largechemical processes.9–12Several algorithmshaveappearedto deal
with multiple-blockdatausingdifferentnotation, under namessuchashierarchical PCA (HPCA),
consensusPCA (CPCA), hierarchical PLS(HPLS) andmultiblock PLS(MBPLS). In this paperwe
reviewthesealgorithmsandcomparethemfrom atheoreticalpointof view usingacommonnotation.
Undesirable properties such as loss of information and convergence problems of someof these
methodsarepointedout andcorrectedwherepossible.Thedifferencesin the resultsobtained when
applyingthese methodsto thesamedataaretheoretically explainedandillustratedwith severalcase
studies. It is also shownthat the resultsof the consensusPCA andmultiblock PLSmethodscanbe
calculatedfrom thestandardsingle-block PCA andtwo-blockPLSmethodswhenthesamevariable
scalingsareappliedfor thesemethods. Thestandardmethodsrequirelesscomputationandgivebetter
estimation of the scoresin the caseof missingdata.It is therefore recommendedthat the standard

Figure 1. PCA method.A first estimateof the score t is multiplied through the data matrix X to get an
approximationof theloadingpT. Theloadingis normalizedto lengthoneandthenmultiplied backthroughX to

get a newscoret. This is repeateduntil convergenceof t

Figure2. PLSmethod.X is representedby its scoret andY is representedby u. A first estimateof u is multiplied
throughX to getanapproximationof theweightwT. Theweightis normalizedto lengthoneandmultipliedback
throughX to producet. Fromt andY theweightqT is obtainedwhichgivesanewvectoru. This is repeateduntil

convergenceof t
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PCA and PLS methodsbe usedto build the modelsand then the weights and loadingsof the
individual blocksandsuperblock andthepercentagevariationexplainedin eachblock becalculated
from the results.

2. NOTATION

For the comparisonof multiblock and hierarchical PCA and PLS methodsa consistent notation
schemeis developed in this paperfor all the algorithms presented.Data matrices are written as
boldfaceuppercasecharacters, vectors as boldfacelowercasecharactersand scalars as lowercase
characters.

k k norm of a vector
X descriptor data
Xb descriptor block b
Eb residual of Xb after deflation
Y responsedata
tb block score of Xb

u scoreof Y
wb weight of variablesin block Xb

q weight of variablesin Y
pb loadingsof variablesin block Xb

T superblock containing all tbs
tT superscore
wT superweight
n number of objects in all blocks
mX number of X variables
mY number of Y variables
mXb number of variablesin block Xb

b block number (b = 1,…, B)

Block variableweightswb representthecontributionof variablesto theblock score.Block variable
loadingspb areusedfor thecalculationof block scoresin PCAandalsofor thedeflationof blocks in
PCA andPLS methods. SuperweightswT give the contributionof the block scorestb to the super
scoretT.

PRESSprediction error sumof squaresof cross-validatedpredictions
RSS residual sumof squaresof calibration

3. MULTIBL OCK ALGORITHMS

3.1. Multiblock PCA methods

In 1987 at the Frankfurt PLS conference, Wold et al.13 introduced the conceptof using multiple
blocksin PCA methods. Their PCA for multiple blockswascalled consensusPCA (CPCA). It was
introducedasa methodfor comparingseveral blocksof descriptor variablesmeasuredon the same
objects.Figure 3 showsthe arrow schemefor the CPCA methodand the algorithm is given in
Appendix I.3. The dataaredivided into B blocks X1, …, XB. A consensusdirectionamongall the
blocksis sought. A starting consensusor superscoreis selectedasacolumnof oneof theblocks.This
vector is regressed on all blocks Xb to give block variable loadingspb. From the block variable
loadings, block scores tb for all blocks arecalculated.All block scoresarecombined into a super
block T. ThesuperscoretT is thenregressedon thesuperblock to give thesuperweightwT of each
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block score to the superscore.The superweight is normalized to length one and a new tT is
calculated.A newiterationstartsuntil thesuperscoreconvergesto apredefinedprecision.Thesuper
scoreis derivedusingall variables,whereasthe block scoresarederivedusingonly the variables
within the corresponding block. The superweight wT givesthe relative importance of the different
blocksXb for eachdimension.Af ter convergence,all the blocksaredeflatedusing the superscore,
anda second superscore, orthogonal to thefirst, canbedeterminedby repeatingtheaboveiteration
ontheresidual matrix. Wold etal.13 suggestedthatCPCAcould beappliedfor theanalysisof sensory
data,for example where a number of refereesarejudging thesensory quality of a numberof wines.
Eachrefereegiveshis/herjudgement onvariousquality characteristicsof thewines(body,bitterness,
color, etc.). The results on all the testsfor eachjudge are placedin separatedblocks Xb and the
summary scoresof eachjudgearetheblock scorestb. Theconsensusof all judgesis representedin the
superscore tT, while the superweight wT shows the relative importance of each judge in the
consensusscore.

In 1996,Wold et al.11 introduceda slightly differentmultiblock PCA methodcalled hierarchical
PCA(HPCA, Appendix I.4). Thearrowschemeof Figure 3 is alsovalid for this algorithm. The only
differenceis in thenormalization.In CPCAthesuperweightwT is normalizedto havelength oneand
therefore the variance explainedby eachprincipal componentis equalto the squaredlengthof the
correspondingsuperscore. In HPCA the superscoreis normalized to lengthone.

Both the CPCA and HPCA algorithms when they were initial ly presented had convergence
problemsandhadto becorrectedfor thework presentedin this paper. In theinitial CPCAalgorithm
only the superweight wT was normalized to length one. This doesnot seemto be enoughfor
convergence; in this study the block variableloadingspb werealsonormalized to lengthone.The
HPCAalgorithmwasintroducedwith only thesuperscoretT normalized.Thealgorithm convergesto
differentsolutionsdepending on thestartingvector. In this studywe alsonormalizetheblock scores
tb to length one.Rännaret al.14 havealreadyusedthis adjustment in their adaptive versionof HPCA
for the monitoring of batch processes.

Figure3. CPCAandHPCA methods.In CPCAa startsuperscoretT is regressedon all blocksXb to give the
blockvariableloadingspT

b . Theblockvariableloadingsarenormalizedto lengthoneandthenmultiplied through
theblocksto give theblockscorestb. Theblockscoresarecombinedin thesuperblockT. ThenaPCAroundon
T is performedto give thesuperweightwT

T (normalizedto lengthone)anda newsuperscore.This is repeated
until convergenceof tT. In HPCA tb andtT arenormalizedinsteadof wT andpb
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Additional researchrevealedthat evenwith the normalization of the block scoresin some cases
HPCA still convergesto several solutionsdependingon the initial guessof thesuperscoretT. If the
startingvectoris highly correlatedto a dominant directionin oneof theblocks,thealgorithm cannot
escapefrom this direction andwill select it asthe directionof the superscore tT. If the blocks are
ratheruncorrelated(which is oftenthereasonfor blocking), thenthisresults in oneof theblocksbeing
favoredto bedescribedby thefinal superscore.However, becauseof theextranormalizationof the
block scoresin the algorithm, often an averagebetween the solutions is found. In Appendix III we
give an example to illustrate that HPCA convergesto multiple solutions that dependon the initial
guessof thesuperscore.To preventtheinitial guessfrom favoring anyof theblocks,theeigenvector
of the XTX matrix that corresponds to the largesteigenvalue was selectedas initial guessin the
iterationsin theseexamples.This forcesthealgorithmto ‘a specific solution’. However, theobjective
functionof theHPCAmethodis notclearasit is for CPCA.Thelatterhasthesameobjectivefunction
as standard PCA, i.e. maximization of the variance in X, which is achievedby choosingthe
eigenvector of XTX thatcorrespondsto thelargesteigenvalue(Appendix II), andit is independent of
the initial guess.

Two specialcases must benoted for the HPCA algorithm. In any principal componentwhereall
block scoresareorthogonal,thesuperscoreof HPCA of thatprincipal componentwill be theexact
meanof all blockscores.In thecaseof only two blockstheHPCAsuperscorewill betheexactmean
of bothblock scores.This averaging is not presentin CPCA.

In themultiblockmethods, wherethevariablesareblocked,thenormalizationof theblock variable
loadings(or weights for PLS) seemsmore appealing than that of the scores.This allows one to
comparethe different block scoreswith their respective lengthson the sameobjects. If the block
scoresarenormalizedto length one,thelengthsof thelatentvariablesarein theloadings(and,in PLS,
theweights) of thedifferent variablesfor eachblock. This makesa comparisonbetweentheblocks
ratherdifficult.

Finally, apoint to noteis that in theCPCAmethodtheblock scoresaredividedby thesquareroot
of thenumberof variablesin thespecificblock to achieveablock scaling.This meansthateachblock
startswith thesamevariance irrespectiveof its size.However, if additionalknowledge is available,
important blocks can be scaledup and less important blocks can be scaleddown by defining
additionalscaling factors.11

3.2. Multiblock PLS methods

Extensions of PLS to use multiple blocks have also been found to be useful. Using additional
information thevariablescanbedividedinto blocksto improve theinterpretability of themodel. The
first application of PLS with multiple X blocks,called PLS path modeling, was a non-predictive
one.15 Waterquality parametersof five siteson Trout Greekin Coloradowereconnectedby a path
model. Predictive multiblock PLS models, to predict quality of adhesivetapes and quality and
geographic origin of wines,wereintroducedby Frankandco-workers.16,17Furthermore,Frankand
Kowalski suggestedtwo differentalgorithmsfor themultiblock method.18 In theaveraging MBPLS
algorithm a weighted average of the block scoresof the separate X blocks, according to their
correlationwith the response,was usedas the superscoreto describe the responsescore u. The
secondalgorithm wasa stepwisealgorithm. For eachlatentvariable only theblock with thehighest
correlationwith u wasselectedto providethe superscoretT.

A refinement of the PLS methodwith multiple blocks was introducedby Wold et al. at the
Frankfurtconference.13 The methodwascalledhierarchicaltwo-block predictive PLS or PLS-2H.
This methodcould be usedfor investigationof complicated sampleswith many different physical,
chemicalandothervariablesto characterizethe samples. This PLSmethodwith multiple X blocks
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wasanextensionof theCPCAmethod.First a CPCAcycle is performedon the multiple X blocks.
Thena PLScycle is donewith thesuperblock T andY. In this PLScycleboththesuperweightwT

and the Y weight q are normalized to length one. The CPCA and PLS cyclesare repeateduntil
convergence of the superscoretT.

Several other variationsof this hierarchicalPLS(HPLS) methodhavebeenusedsince thatpaper.
Slama9 usedthe HPLS methodfor the modeling of a catalytic cracker and the subsequent frac-
tionationsection of a petroleumrefinery. That specific HPLSalgorithmuseda normalizationof the
superscore tT instead of thenormalizationof thesuperweightwT indicatedby Wold etal.13 Figure4
showsthearrow schemeof thishierarchicalPLSmodelwith only oneY block. In 1996, Wold etal.11

published a slightly different HPLS algorithm which was usedfor modelingprocessdatafrom a
catalytic cracker. Here also the superscore tT was normalized, but an additional step to assure
orthogonality of thesuperscoreswasadded.However, this latter stepseemsunnecessary,sincethe
superscoresarealreadyorthogonal. The algorithmusedby Slama9 is presented in Appendix I.5 of
this paper.All thesealgorithms9,11,13 gave identical results and so they are all referredto in the
following asHPLS.

In 1988,Wangen andKowalski19 introducedanotherPLSalgorithmfor multiple blocks thatwas
basedonanalgorithmoriginally presentedby Wold etal.20 ThismultiblockPLS(MBPLS)algorithm
couldhandlemanytypesof pathwayrelationshipsbetween theblocks.Blockscanbeleft endblocks,
which only predict subsequentblocks, right end blocks, which are only predictedby preceding
blocks,or interior blocks,which arepredictedby otherblocks to their left but alsopredictblocks to
theright of themselves.Thearrowschemeof themostbasicMBPLSmethodis shown in Figure5 and
thealgorithmis presentedin Appendix I.6. The maindifferencebetween this methodandtheHPLS
methodis thatin MBPLSeachblockXb is usedin aPLScyclewith Y to calculatetheblockscorestb,
whereas in HPLStb is calculatedasin CPCA.Thentheblock scoresareagaincombined in thesuper
blockT andaPLScyclebetween T andY is performed.Thesecyclesarerepeated until convergence
of the superscore tT. In this MBPLS algorithm both the block variable weights wb and the super

Figure4. HPLSmethod.HPLSis anextensionof theHPCAmethod.First anHPCAcycleis performedwithout
normalizationof theblockscorestb. Then,insteadof thePCAcycleonT, aPLScycleis donebetweenT andY
from which a superweight wT

T and an updatedsuperscoretT are obtained.Thesecyclesare repeateduntil
convergenceof tT
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weight wT are normalized.Block variable loadingspb are calculated for the deflation step.The
MBPLS methodhasbeenusedin several applicationsfor themonitoring of chemical processes.10,21

The advantageof the blocking approachis that in addition to a monitoring spacefor the whole
process,one also obtainsmonitoring spaces for eachprocess block. When a fault occurs in the
process,this approachmakesit mucheasierto detect, isolateandidentify causesfor thefault. Kourti
et al.21 usedthe MBPLS methodto combinedatafrom preprocessingconditions andother process
information with thetrajectoriesof thevariablesin thebatchprocessto monitor thebatchoperation
andpredict the quality of the productin a polymerizationprocess.

TheMBPLSmethodof Wangen andKowalski usedtheblockscorestb for thedeflation of thedata
blocksXb.

19 This forcestheblock scoresto beorthogonal, but thesuperscorestT becomecorrelated.
Westerhuis andCoenegracht12 showedthat by using the block score deflationmethod,someof the
information in X maybe lost in thedeflationstep.The entirevariation in thedirectionof theblock
scoretb is subtractedfrom eachblock Xb, eventhough only wT(b)⋅tb is usedfor prediction of the
responseY. HerewT(b) is thesuperweightof thecorrespondingblock scoretb, andwT(b)� 1. This
undesirable effect becomesworse as the number of blocks increases.In that caseeach wT(b)
decreases,because�(wT(b))2 = 1. WesterhuisandCoenegracht12 suggestedusingthesuperscore tT

for thedeflationstep.Thenonedeflatesonly theinformation from theblocksXb thatwasusedfor the
prediction of the responseY. Now the superscoresbecomeorthogonal and the block scoresare
slightly correlated.A similar deflationthatproducesorthogonal superscoreswasusedby Frankand
Kowalski18 in theiraveragingalgorithm. Thelossof information whendeflatingwith theblock scores
canleadto poorperformance. Therefore it is recommendedthat the superscoredeflationapproach
alwaysbe usedin MBPLS.

To summarize, there aretwo differencesbetween theMBPLS methodandtheHPLSmethod.The
first one is the normalization. In MBPLS the block variableweights wb and superweight wT are
normalized to lengthone,whereas in the HPLS model only the superscore tT is normalized. The

Figure5.MBPLSmethod.A startscoreu is regressedonall blocksXb to givetheblockvariableweightswT
b . The

blockvariableweightsarenormalizedto lengthoneandmultiplied throughtheblocksto givetheblockscorestb.
Theblock scoresarecombinedinto thesuperblock T. A PLScyclebetweenT andY is performedto give the
super weight wT

T, which is also normalizedto length one, and the super score tT. This is repeateduntil
convergenceof tT
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seconddifferenceis thatin MBPLSY is regressedonall descriptor blocksXb, whereasin HPLSY is
only regressedonthesuperblock T. Thiscausestheblockscoresto bedifferentfor thetwo methods.

In both HPLS and MBPLS the block scoresare divided by the square root of the numberof
variablesin theblock to achieveblock scaling, althoughadditional scalingfactorscanbeintroduced
to scaleup or down the importance of variousblocks.11

4. RELATIONSHIPSBETWEEN MULTIBLOCK AND SINGLE-BLOCK ALGORITHMS

For CPCAandMBPLS it is possible to calculatethescoresandvariableweightsandloadingsof the
individualblocks andsuperblock andthepercentageexplainedvariationin eachblock by using the
standard PCA andPLS methods. When the variablesarescaledwith the same scalingfactors, the
superscoresin themultiblockmethodsareexactly thesameasthescoresin thestandard methods(see
Appendix II). Thereforetheblock scoresandblock variableweightsandloadingscanbecalculated
from the resultsof the standardPCA andPLSanalyses.

4.1. CPCA and PCA

Let X bea datamatrix thatwill bedivided into B blocks(X1, X2, …, XB) with block b havingmXb

variables.To maintainthesamescalingin PCAasis usedin CPCA,weapplythefollowingscalingto
X for the PCA analysis:

X � �X1=m
1=2
X1 ; . . . ;XB=m

1=2
XB � �1�

ThePCAmethodwill beapplied on X asdefinedby (1) andtheCPCAmethodon X1, …, XB. Let tT
be the superscore of the CPCA method,tb the block scores,wT the superweight andpb the block
variableloadingof block Xb. Let t be the score of the standard PCA method.

The superscoreof CPCA equals the score of PCA, i.e. tT : t (seeAppendix II.1). The block
variableloadingspb, blockscoresandsuperweightcanbeobtainedfrom thet scoreof standard PCA:

pb � Xb � t=tT � t �2�

normalizepb to k pb k� 1 �3�

tb � Xb � pb=m
1=2
Xb �4�

T � �t1; . . . ; tB� �5�

wT � TT � t=tT � t �6�
The residuals for the variablesin block Xb are

Eb � Xbÿ tT � pT
b �7�

The percentageexplained for eachblock Xb equals

�1ÿ trace�ET
b � Eb�=trace�XT

b � Xb�� � 100% �8�
If the block scalingis not appliedin the CPCA method,i.e. tb = Xb⋅pb in equation (4), then X

shouldbe scaledas[X1, …, XB] for the PCA methodto obtainthe samescore aswith CPCA.

4.2. MBPLS and PLS

In thesame way, MBPLSresults usingthesuperscoredeflation method12 canbeobtained from the
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standard PLSmethod.Let X bea datamatrix of descriptorsthat is goingto bedividedinto B blocks
with mXb variablesfor block b. To maintain thesamescalingin PLSasis usedin MBPLS, we apply
the following scaling for the PLSanalysis:

X � �X1=m
1=2
X1 ; :::;XB=m

1=2
XB �

ThePLSmethodwill beappliedonX asdefinedaboveandtheMBPLSmethodonX1, …, XB. Let tT

bethesuperscoreof theMBPLS method,tb theblock scores,wT thesuperweightandwb theblock
variableweightfor block Xb. Let t bethescoreof X andu thescoreof Y of thestandardPLSmethod,
whereY is a datamatrix of responsevariables.

ThePLSscorest andu equaltheMBPLSsuperscorestT andu (seeAppendix II.2). Fromthese
resultstheblock scorestb, block variableweightswb andsuperweightwT of theMBPLSmethodfor
eachblock canbecalculated:

wb � XT
b � u=uT � u �9�

tb � Xb � wT
b=m

1=2
Xb �10�

T � �t1; :::; tB� �11�
wT � TT � u=uT � u �12�

Justaswith PCA, the explainedvariation for eachblock Xb canbe calculated.Again, if no block
scalingis usedin the MBPLS method,i.e. tb = Xb⋅wb in equation (10), thenX should be scaled as
[X1, …, XB] for the PLSmethodin orderto obtain the same scoresaswith MBPLS.

4.3. Discussion

TheaboveequivalencesbetweenCPCAandPCAandbetween MBPLSandPLSarevalid only when
thereareno missingvalues.In thecaseof missingdatain thePLSandPCA methods,22 information
onthecorrelationsamongthevariablesis usedto estimatethescores.Theblockingmethodscanonly
usethecorrelationsamongthevariablesthatarein thespecificblock to giveestimatesfor thescores,
whereas thestandardPCA andPLSmethodsmake useof thecorrelationof all thevariablesfor the
scoreestimation.In cases wherevariablesin differentblocks correlate,missingvalueswill decrease
the performance of the blocking methodsascomparedwith the standardPCA andPLSmethods.

The aboveanalysishasshownthe equivalencebetween CPCA and ordinary PCA andbetween
MBPLS (with superscoredeflation) andordinary PLS. However, no suchequivalenceexistswith
HPCA andHPLS.

TheHPLSmethodof Wold et al.11 andMBPLS with superscore deflation12 canalsobeusedfor
themodeling of severalY blocks.Thecaseof severalY blocksmightbeinterestingwhen thenumber
of responsevariablesis largeandadditional knowledgefor blockingis present. Forexample,whena
chemical processproduces severalproducts, characteristics of the products can be placed into
differentY blocksto improve theinterpretability. However,just asin thecaseof one Y block, in the
MBPLS methodthesameresults canbeobtainedby first calculatingthestandardPLSmodelusing
the appropriatevariable scaling. Insteadof blocking the responseinto severalblocks, it is betterto
first run an ordinary PLS andthencalculate the responseblock scoresandblock variable weights.
This hasthe sameadvantages for calculation speedand presenceof missingvaluesas mentioned
before.

5. SIMULATION STUDIES AND DISCUSSION

In this section, consensusprincipalcomponentanalysis(CPCA) is comparedwith hierarchical PCA
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(HPCA) and the multiblock projectionsto latent structures (MBPLS) method is compared with
hierarchicalPLS(HPLS) asusedby Slama.9 Both multiblock PLSmodels areconsideredwith only
oneresponseblock Y.

Thedifferencesin theresults obtained whenthesealgorithmsareappliedto thesamesetof dataare
illustratedwith examplesfrom simplesimulationsandreal datasets.

5.1. ConsensusPCA and hierarchi cal PCA

The differencebetween the two methodsis causedby the different way of normalization in the
correspondingalgorithm. In bothalgorithms the superscorewill be the direction mostdominant in
theconsensusblock T. However, becausein HPCAtheblockscoresarenormalizedto length one,the
algorithm searchesfor the mostdominant directionin these normalized scores.In CPCAthe block
scoresenter T as they arecalculatedfor eachblock and therefore the superscorewill just be the
directionmost dominant in theblock scores.Differencesbetweenthemethodscanbeexpectedwhen
astrongdirectionexistsin only asingle block (Example 1).Whenthedirectionsarespreadamongthe
blocks,the methodsareexpectedto give similar results (Example 2).

Example 1

In the first simulationwe considerfour blocksof five variableswhere oneblock contains a strong
directionthat is not availablein the otherblocks:

X1 = [d1 d1 d1 d1 d1], X2 = [d2 randn(4)]

X3 = [d2 randn(4)], X4 = [d2 randn(4)]

Here randn(4) standsfor four columnsof normally distributed randomdatawhich aredifferent in
eachof the blocks.All blocks have50 observations.Block X1 consists of only one direction d1.
Blocks X2 to X4 all haveonecommon direction d2 with four random variables.Al l directions are
selectedto beorthogonal. Twenty percentof random noisewasaddedto eachvariable in eachof the
blocks.All variablesin all theblocks aremean-centeredandscaledto unit variance. Table1 shows
the cumulative percentagesof explained variation of the first two PCsfor the four blocks for the
CPCAandHPCA methods

The first superscore in the CPCA method,just aswe would expectfrom a standard PCA, is the
direction most dominant in all the data. This is direction d1 and thereforeblock X1 is described
completely by this superscore.The secondsuperscorerepresentsdirection d2 which accounts for
20% of the variation in blocks X2 to X4. In the HPCA methodthe first superscoreis directiond2

which is presentin threeblocksandtheirblockscoresandthereforemoreavailablein thesuperblock
thandirection d1. Direction d1 doesnot appear in the second superscore either,becausethe block
scoresfor the secondcomponentfor X2 to X4, which are now randomnumbers, are set by the
algorithm to beequally importantin thesuperblock.Consideringtheseresults,thehierarchical PCA

Table1. Cumulativepercentageexplainedvariationof four blockswith CPCA
andHPCA for the first two PCs

Block X1 Block X2 Block X3 Block X4

CPCA PC1 96⋅7 0⋅1 0⋅2 0⋅9
PC2 96⋅8 19⋅8 19⋅8 20⋅3

HPCA PC1 0⋅1 19⋅7 19⋅6 19⋅5
PC2 6⋅3 26⋅2 25⋅7 30⋅4
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seemsto emphasizetheconsensusmorethantheconsensusPCA,but thestrongdirectionin only one
of the blocks is neverfound. In CPCA the strongbelief of a single judge is preferredto the weak
beliefsof many.

Example2

Thesecond simulation showsacasewhere thetwo directionsarespreadovertheblocks. In this case
the results of the two methodsare nearly the same.Now the two directions d1 and d2 are spread
amongthreeof the four blocks andarenot presentin the last block X4:

X1 = [d1 d1 d1 d2 randn(1)], X2 = [d1 d1 d2 randn(2)]

X3 = [d1 d2 d2 randn(2)], X4 = [randn(5)]

Table2 showsthecumulative percentageexplainedvariation of thesecondsimulation for all blocks
for the CPCAandHPCA methods.

The percentageexplained variations are nearly the same for both methodsand equal to that
expectedgiventhefrequencyof d1 andd2 in thefour datasets.In bothmethodsthefirst superscoreis
similar to directiond1 andthesecondsuperscoreto directiond2. Direction d1 accountsfor 60%,40%,
20% and 0% and direction d2 for 20%, 20%, 40% and 0% of the variation in the four blocks
respectively.

The superweights wT of both methodsshow how the blocks behavecompared to eachother.
Figure6 shows the relative importance of the four blocksfor CPCA andHPCA according to their
superweights. HPCA just signals that the direction of the superscore is present in the block.
Therefore blocks X1, X2 and X3 get the samesuperweight of 1⋅0 for PC1 and PC2,because the
direction of the superscore is presentin the blocks, irrespective of how muchof this direction is
present. In CPCAthesuperweightdepends on how muchof thesuperscore is presentin theblocks.

Table3 showsthecorrelationsbetweentheconsensusdirections d1 andd2 andthesuperscore tT

and block scores t1 to t4 of the first and second PCs. The correlationsbetween the consensus
directions andthescoresaresomewhathigherfor CPCAthanfor HPCA, which would indicatethat
theconsensusdirectionsareestimatedmore accurately by CPCA;this is becausein CPCAtheblock
scoresmaintaintheir lengthin the superblock.

ConsensusPCAandhierarchicalPCAarebothmethodsthatdealwith multiple blocksof variables
basedon thesame objectsto find latentdirectionsin thedata.Theabovesimulationsshowthatboth
methodsgivesimilar results whenthelatentdirectionsarespreadamongtheblocks.However, whena
very strongdirectionexistsin only oneof theblocks,CPCAfindsthis direction,whereastheHPCA
algorithmdoesnotfind it. Thesuperweightin CPCAshowshowtheblocksarerelatedto eachother.
TheHPCA superweightonly showswhether thedirection of thesuperscoreis presentin theblock.

Table2. Cumulativepercentageexplainedvariationof four blockswith simu-
lateddatafor the first two PCsfor CPCAandHPCA

Block X1 Block X2 Block X3 Block X4

CPCA PC1 58⋅1 38⋅6 19⋅5 0⋅1
PC2 77⋅3 57⋅6 58⋅1 0⋅4

HPCA PC1 56⋅4 38⋅4 20⋅4 0⋅2
PC2 77⋅0 57⋅6 57⋅9 0⋅6
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5.2. Multibl ock PLS and hierarchical PLS

In this subsectionwe compareHPLS with MBPLS.Both implementationsof MBPLS,block score
deflation19 andsuperscoredeflation,12 will beconsidered.Thesuperscoreis calculatedin exactlythe
sameway by bothMBPLSmethods, but theresultsdiffer after thefirst latentvariablebecauseof the
different deflation methods.

Theblock scoresin MBPLS arechosento haveaffinity with theresponsevariableY, whereasthe
block scoresin HPLS are chosen to have affinity with the consensusscore tT. Furthermore, the
normalization in HPLSis doneon thesuperscore,whereas for MBPLS a normalizationof theblock
variableweightsandsuperweightis used.In Examples3 and4 it is shownthatHPLSselectsonly one
or a few descriptor blocksto predict the response.Example3 shows that the block scoredeflation
MBPLSusesmorevariationof theX blocksbutpredictslessof Y. In Example4,simulateddatafrom
ahypothetical processareusedto showthattheobjectiveof HPLSis notpredictability of Y butrather
explanation of X.

Figure6.SuperweightwT for four blockswith CPCA(❋) andHPCA(�). In HPCAwT is nearlyonefor all blocks
in whichtheconsensusdirectionis present.CPCAdiscriminatesbetweentheblocksby theamounttheconsensus

scoreis presentin the blocks

Table3.Correlationsbetweendirectionsd1 andd2 andsuperscoretT andblock
scorest1 to t4 for PC1andPC2

tT t1 t2 t3 t4

CPCA d1 (PC1) 0⋅990 0⋅990 0⋅981 0⋅961 0⋅067
d2 (PC2) 0⋅987 0⋅973 0⋅971 0⋅980 0⋅080

HPCA d1 (PC1) 0⋅966 0⋅986 0⋅971 0⋅890 0⋅054
d2 (PC2) 0⋅958 0⋅948 0⋅946 0⋅952 0⋅078
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Example3. LDPE data

Thefirst comparisonbetween PLSwith multiple blocks is donewith datafrom a multizone tubular
reactorfor theproduction of low-density polyethylene(LDPE), which wasdescribedby MacGregor
et al.10 Theprocessvariablesaredividedinto two blocksof eight variables.Theresponseconsistsof
five product variables that characterizethe LDPE. A review on LDPE processescan be found in
Reference23anddetailsof thesimulation canbefoundin Reference24.Table4 showstheresultsof
themodeling for HPLS,MBPLS with block score deflation andMBPLS with superscoredeflation.
Thecumulativepercentagesof explainedvariation for bothX blocksandY aregiven for thefirst four
latent variables (LV1 to LV4). Furthermore,cross-validation resultsare indicated by the CSV/SD
factor, which is indicative of the predictive abilities of eachprincipal component. It is the ratio
PRESSr /RSSrÿ1 andvalueslarger thanunity suggest that the rth componentdoesnot improvethe
prediction power of themodel.25 HerePRESSr is thesumof thesquaredprediction errorsaftertherth
latentvariableandRSSrÿ1 is the residual sumof squaresafter the (rÿ1)th latentvariable.

Table4 clearlyshowsthatHPLStendsto selectonly oneof theblocks to useinformationfrom, in
eachlatentvariable.In thefirst latentvariableLV1, 41%of block X2 is usedandonly 8%of blockX1

while in LV2 almostall informationcomesfrom block X1. TheMBPLSmethodsusebothX blocksin
all LVs. This may improve the interpretability of the HPLS model, becauseonly one X block is
importantfor eachLV, but theamount of explainedY is only 82%after four components,whereas
MBPLS(superscoredeflationmethod)explains94%of thevariation in Y. Theblock scoredeflation
MBPLS methoddescribesmoreof thedescriptor blocks,but theresponseis predictedlessthanwith
the superscore deflation method.This illustratesthe previously describedproblemwith deflation
usingblock scores.Only part of the block scores(wT(b)⋅tb) is usedfor the prediction of Y in each
componentand yet the entire direction tb is removedfrom Xb at the deflationstage.As a result,
variationin eachXb is removedby deflationprior to its usein predictingY; hencetherelatively high
percentageXb explainedandthe low percentageY explained.

Table5 showsthecorrelationsbetweenthesuperscoretT andu andtheblock scorest1 andt2 for
the MBPLS (superscoredeflation method)and HPLS methodsfor LV1 and LV2. In HPLS the

Table4. Resultsof modelingof LDPE datawith HPLS andMBPLS methods.The cumulativepercentagesof
explainedvariation for both X blocksandY aregiven, as is the CSV/SDfactor for all threemultiblock PLS

methods

HPLS MBPLS (block) MBPLS (super)

%X1 %X2 %Y CSV/SD %X1 %X2 %Y CSV/SD %X1 %X2 %Y CSV/SD

LV1 8 41 46 0⋅74 39 41 61 0⋅64 24 30 61 0⋅64
LV2 44 44 65 0⋅82 57 56 83 0⋅72 37 48 87 0⋅63
LV3 64 53 76 0⋅94 69 70 86 0⋅95 50 61 91 0⋅89
LV4 78 66 82 0⋅93 87 89 90 0⋅91 60 75 94 0⋅86

Table5. CorrelationsbetweentT, t1 andt2, andtT andu for MBPLS (super)andHPLSmethods

t1 MBPLS t2 MBPLS tT MBPLS t1 HPLS t2 HPLS tT HPLS

tT LV1 0⋅77 0⋅85 1.00 0⋅50 1.00 1.00
u LV1 0⋅73 0⋅82 0.96 0⋅59 0⋅80 0.82
tT LV2 0⋅97 0⋅98 1.00 1.00 0⋅40 1.00
u LV2 0⋅92 0⋅88 0.92 0⋅90 0⋅58 0.90
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correlationof one of thetwo block scoresto thesuperscore is 1⋅00,whereas thecorrelationwith the
otherblock is ratherlow. Thecorrelationsof the superscorestT with u (0⋅82 and0⋅90) arelessfor
HPLSthanfor the MBPLS method(0⋅96 and0⋅92).

Example 4. Simulatedhypothetical process

The last example is a very simple simulation of a hypothetical processconsistingof two units.The
dataavailable aretemperaturesfrom thefirst unit (X1), temperaturesfrom thesecondunit (X2) and
pressuresfrom thesecondunit (X3). X1 canbedescribedby two latentdirectionsd1 andd2. X2 andX3

canalsobedescribedby two directionsd3 andd4 for bothblocks.X1 consistsof threecolumnsandX2

andX3 consistof four columnsasfollows:

X1 = [0⋅50d1� 0⋅50d2, 0⋅75d1� 0⋅25d2, 0⋅25d1� 0⋅75d2]

X2 = [0⋅50d3� 0⋅50d4, 0⋅25d3� 0⋅75d4, 0⋅75d3� 0⋅25d4, 0⋅99d3� 0⋅01d4]

X3 = [0⋅50d3� 0⋅50d4, 0⋅75d3� 0⋅25d4, 0⋅25d3� 0⋅75d4, 0⋅01d3� 0⋅99d4]

Thequalityof theproduct mainly dependsontheonedirection of thetemperaturesof thefirst process
unit:

Y = d1� 0⋅2d3

Ten per centof normally distributednoisewasaddedto all variablesin all threeblocksandto the
response.The latentdirectionsd1, d2, d3 andd4 werenearlymutually orthogonal.Al l variablesin all
blocksweremean-centeredandscaledto unit variance.Table6 showsthe results of the modeling
with HPLSandMBPLS (super score deflation) for the first four latentvectors (LV1 to LV4).

Theresults in Table6 showthat in thefirst latentvariableHPLSdescribesthestronginformation
from blocks X2 and X3 which hasonly a weak relation with Y, instead of the smalleramount of
information from blockX1 whichhasastrongrelationwith Y. TheCSV/SDparameteris evenhigher
than1⋅00 for HPLS for LV1 andLV3, suggesting that theseLVs do not improve the model for Y.
After four LVs all the information in the X blocks is described,but only in the last LV doesHPLS
makealargejumpto explain96%of Y. Thismeansthataweaklatentvariableis usedto explainmost
of the variation of the responsevariable.

Wold et al.11 suggested that in order to estimate the number of model componentsto collect in
HPLS,‘the normalprocedureis to first run an“unblocked” model andthenusethesamenumber of
components in the hierarchical modelas in the corresponding “unblocked” model.’ However, our
findingscontradictthisstatement. It is notalwayssufficient for HPLSto usethesamenumberof LVs

Table6. Resultsof modelingof simulateddatawith HPLS andMBPLS. The
cumulativepercentageexplainedsumof squaresfor theX blocksandY andthe

CSV/SDfactor aregiven for LV1 to LV4

CSV/SD %X1 %X2 %X3 %Y

HPLS LV1 1⋅01 0 78 73 2
LV2 0⋅90 82 79 74 26
LV3 1⋅01 82 99 99 29
LV4 0⋅24 99 99 99 96

MBPLS (super) LV1 0⋅78 59 14 15 54
LV2 0⋅69 68 53 62 79
LV3 0⋅50 97 79 78 95
LV4 0⋅94 99 99 99 96
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asfor an unblockedPLS model. MBPLS,which equalsthe standard PLS,only needsthreeLVs to
explain95%of thevariation of Y, whereasHPLSexplainedonly 29%of thevarianceafterthreeLVs.

In summary, HPLS actsmore like an HPCRmethod.This might be expected from the way the
block scoresarecalculated.It meansthatHPLSprefersto describe thevariationin X ratherthanthe
covariancebetween X andY. In agreementwith this,HPLSsometimesmayneedmoreLVs to reach
thesameamount of explainedvariationin Y thanMBPLS. HPLSalsoactslike ablock selector. In the
first andthird LVs only blocksX2 andX3 areusedto predictY, whereasin thesecond andfourthLVs
only block X1 isused.In MBPLStheblocksarecombinedin all LVs to givethebestpredicting power.

One might arguewith the blocking chosen in this example. Because blocks X2 and X3 carry
somewhat similar information (becauseof the relation betweentemperature and pressure in the
secondunit), theyshouldnot bedivided.Table7 showstheresultsof thesame datawhenblocks X2

andX3 are combined into onenew block of eight variables.Combining blocks X2 andX3 hardly
makesanydifferenceto thepercentageexplainedvariationfor theX blocksandalso for theresponse
variable.The amount of explainedvariation for blocks X2 and X3 is just combined into one new
block. However, becauseof the block scaling, they haveevenlessinfluencethan they hadastwo
separateblocks.

HPLSshowsthesameconvergenceproblemsasHPCA. However, in thiscasenoextranormaliza-
tion of theblock scoreswasapplied. Thereforefor eachof thelatentvectorsthefinal solutionof the
superscoretT favorsoneof theblocks.If in Example4 a column of block X1 wasusedastheinitial
guessfor thesuperscore,thenthefinal superscorewould favor thefirst block andhardlyanythingof
blocksX2 andX3 would be explained.If any columnof block X2 or X3 wasselectedasthe initial
guessof the superscore, thenthe same results would beobtained asthe onespresented in Table6.
This explainswhy HPLS actsasa block selector. To force the algorithm to ‘a specificsolution’ in
theseexamples,wechosetheinitial guessto betheeigenvector of XTX thatcorrespondsto thelargest
eigenvalue.However,theobjectivefunction of HPLSis not clearasit is for MBPLS. Thelatter has
thesame objectivefunctionsasstandard PLS,i.e. maximization of thecovariancebetween tT andu,
which is achievedby selectingtheeigenvector of XXTYYT thatcorrespondsto thelargesteigenvalue
as tT (AppendixII). As mentionedabove,HPLS alsoactslike a hierarchical principal component
regression (HPCR) method.The scoresof HPLS hardly changewhen the responsevariableY is
replacedby anyrandom variable.Thusthe responsehasalmostno influenceon theselectionof the
scores.This explainsin Example4 why latentvectorsareselectedthathardly describe theresponse
variable.

Table 7. Resultsof modelingof simulateddatawith HPLS and
MBPLS with only two blocks. The cumulativepercentageex-
plainedsumof squaresfor the X blocksandY andthe CSV/SD

factor aregiven for LV1 to LV4

CSV/SD %X1 %X2X3 %Y

HPLS LV1 1⋅01 0 76 2
LV2 0⋅91 82 76 26
LV3 0⋅92 82 99 29
LV4 0⋅24 99 99 96

MBPLS (super) LV1 0⋅73 70 4 56
LV2 0⋅45 94 6 95
LV3 1⋅03 98 77 96
LV4 1⋅04 99 98 96
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6. CONCLUSIONS

In this paperseveralmultiblock andhierarchicalPCA andPLSmethodsthathaverecentlyappeared
in theliteraturehavebeencompared. Thesamenotationwasusedto clearlyshowthesimilaritiesand
differences between the methods. Someconvergenceproblems wereindicated.On someoccasions
hierarchicalPCAandhierarchicalPLSconvergedto differentsolutionsdependingontheinitial guess
of thesuperscore.Thefinal superscoremostly describestheblock that is closestto theinitial guess.
In the caseof HPCA, where the block scores are also normalized, often an averagebetween the
solutionsis found.Still, theobjective function of thehierarchicalPCAandPLSmethodsis notclear,
asopposedto CPCA andMBPLS wherethe objectivefunctionsare the sameasthoseof standard
PCA andPLSrespectively.

Hierarchical PCA and consensusPCA havebeencompared.For HPCA the initial guessof the
superscorewassetto beequalto theeigenvectorof XTX thatcorrespondsto thelargesteigenvalue.
Whentheconsensusdirectionsarespreadovertheblocks,themethodsproducesimilar results.HPCA
disregardsa very strongdirection from a single block to favor a weaker directionthat is presentin
multiple blocks; in fact, it neverselectsthis strongdirection. Whenall blocksareorthogonal andno
consensuscanbe found,CPCAlooks for theblock scorewith thehighestvariance,whereasHPCA
givesthemeanof all theblock scores,regardlessof their length. In thecaseof only two blocksHPCA
givestheexactmeanof thetwo block scoresastheconsensus,whereastheconsensusscoreof CPCA
is a weightedaverageof bothblock scores,dependenton their length.

Hierarchical PLS and multiblock PLS were also compared. Two options of deflation were
compared for theMBPLS method.Theblock score deflation methodperforms worsethanthesuper
scoredeflationmethodbecauseof theremovalof information from thedescriptor blocksthatis never
usedfor prediction. It is thereforerecommendedthatthesuperscoredeflationmethodalwaysbeused
in MBPLS. HPLSacts like ablockselectionmethod.For eachlatentvariableoneor a few blocksare
selectedto beusedfor theregression andtheother blocksarealmostignored.Thismayfacilitatethe
interpretationof themodel,but themethodperformslesswell for prediction of theresponse.HPLS
looksmorelike anHPCRmethod.Thesuperscore hardly changes whentheresponseis replacedby
any random variable. As a result, HPLS may need more latent variables to predict the same
percentageof variance of Y asMBPLS.

Theresults of bothCPCAandMBPLScanalsobecalculatedby usingthestandard PCA andPLS
methodsrespectively when the same variablescaling is used.This requireslesscomputationand
givesbetterestimation for the scoresin the casewhere therearemissing data,becausecorrelations
amongall variablescanbeusedfor estimationof thescoresinstead of only thecorrelationsamongthe
variablesin thespecificblock. Therefore we recommendthatoneshouldusethestandard PCA and
PLS methodswith appropriate scaling of the variablesto obtain the model and then calculate the
blockscores,blockvariableweights,superweightandpercentagevariation explainedby eachblock.

APPENDIX I

I.1. Principal ComponentAnalysis (PCA)

Transform, centerandscale
For eachdimension

choosestart t
loop until convergence of t

p = XT�t/tT�t % X loading
normalize p to kpk = 1
t = X�p/pT�p % X score
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end
DEFLATION
X = X ÿ t�pT

end

I.2. Projections to Latent Structures (PLS)

Transform, centerandscale
For eachdimension

choosestartu
loop until convergenceof t

w = XT�u/uT�u % X weight
normalize w to kwk = 1
t = X�w/wT�w % X score
q = YT�t/tT�t % Y weight
u = Y�q % Y score

end
DEFLATION
p = XT�t/tT�t % X loading
X = X ÿ t�pT

Y = Y ÿ t�qT

end

I.3. ConsensusPCA (CPCA)

Transform, centerandscale
For eachdimension

choosestart tT

loop until convergenceof tT

pb = XT
b �tT /tT

T�tT % Xb block variableloadings
normalize pb to kpbk = 1
tb = Xb�pb/m1=2

Xb % Xb block scores(block scaling)
T = [t1…tB] % Combine all block scoresin T
wT = TT�tT /tT

T�tT % Superweight
normalize wT to kwTk = 1
tT = T�wT % Superscore

end
DEFLATION
pb = XT

b �tT /tT
T�tT

Xb = Xb ÿ tT�pT
b

end

Somescaling factor additionalto the block scaling canbe introduced.Thenin the loop tb becomes
tb = sb�Xb�pb/m1=2

Xb , where sb is the additionalscalingfactor for block Xb.

I.4. Hierarchi cal PCA (HPCA)

Transform, centerandscale
For eachdimension

choosetT to be the eigenvector of XTX corresponding to the largesteigenvalue
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loop until convergence of tT

pb = XT
b �tT /tT

T�tT % Xb block variableloadings
tb = Xb�pb % Xb block scores
normalize tb to ktbk = 1
T = [t1 … tB] % Combine all block scoresin T
wT = TT�tT /tT

T�tT % Superweight
tT = T�wT % Superscore
normalize tT to ktTk = 1

end
DEFLATION
Xb = Xb ÿ tT�pT

b
end

I.5. Hierar chical PLS (HPLS) (for oneY block)

Transform, centerandscale
For eachdimension

choosetT to be the eigenvector of XTX corresponding to the largesteigenvalue
loop until convergence of tT

pb = XT
b �tT /tT

T�tT % Xb block variable loadings

tb = Xb�pb/m1=2
Xb % Xb block scores(block scaling)

T = [t1 … tB] % Combineall Xb block scoresin T
q = YT�tT /tT

T�tT % Y weight
u = Y�q/qT�q % Y score
wT = TT�u/uT�u % X superweight
tT = T�wT /wT

T�wT % X superscore
normalize tT to ktTk = 1

end
DEFLATION
Xb = Xb ÿ tT�pT

b % Deflation of Xb with X superscore
Y = Y ÿ tT�qT % Deflationof Y with X superscore

end

Somescaling factor additional to the block scaling canbe introduced.Thenin the loop tb becomes
tb = sb�Xb�pb/m1=2

Xb , wheresb is the additional scalingfactor for block Xb.

I.6. Multiblock PLS (MBPLS) (for oneY block only)

Transform, centerandscale data
For eachdimensions

takeu = some columnof Y
loop until convergence of tT

wb = XT
b �u/uT�u % Xb block variable weights

normalize wb to kwbk = 1
tb = Xb�wb/m

1=2
Xb % Xb block score

T = [t1 … tB] % Combineall blocksscoresin T
wT = TT�u/uT�u % X superweight
normalize wT to kwTk = 1
tT = T�wT /wT

T�wT % X superscore
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q = YT�tT /tT
T�tT % Y weight

u = Y�q/qT�q % Y score
end
DEFLATION
pbT = XT

b �tT /tT
T�tT % Deflationwith X superscore

Xb = Xb ÿ tT�pT
bT % Westerhuis andCoenegracht12

Y = Y ÿ tT�qT

or
pb = XT

b �tb/tT
b �tb % Deflation with Xb block score

Xb = Xb ÿ tb�pT
b % Wangen andKowalski19

Y = Y ÿ tT�qT

end

Somescaling factor additionalto the block scaling canbe introduced.Thenin the loop tb becomes
tb = sb�Xb�wb/m1=2

Xb , wheresb is the additional scaling factor for block Xb.

APPENDIX II

II.1. Proof that t scoreof PCA equals tT scoreof CPCA(in caseof no missingdata)

PCA on X (X = [X1/m
1=2
X1 X2/m

1=2
X2 ] = [X*

1 X*
2]).

t � X � p �13�
t � X�1 � po

1 � X�2 � po
2 �14�

wherepo
1 is the part of p belonging to the variablesin X*

1

t � �X�1 � X�1T � t � X�2 � X�2T � t�=tT � t �15�
t � �X�1 � X�1T � X�2 � X�2T�t=tT � t �16�

At convergence (X*
1�X*T

1 � X*
2�X*

2
T)t = (tT�t)t. This shows that tT�t is the largest eigenvalue of

X*
1�X*

1
T � X*

2�X*
2
T andt is its corresponding eigenvector.

CPCAon X1 andX2:

tT � T � wT �17�
tT � t1 � wT�1� � t2 � wT�2� �18�
tT � �t1 � tT

1 � tT � t2 � tT
2 � tT�=tT

T � tT �19�
tT � ��X1=m

1=2
X1 � � p1 � pT

1 � �XT
1=m

1=2
X1 � � tT � �X2=m

1=2
X2 � � p2 � pT

2 � �XT
2=m

1=2
X2 � � tT�=tT

T � tT �20�
tT � �X�1 � p1 � pT

1 � X�1T � tT � X�2 � p2 � pT
2 � X�2T � tT�=tT

T � tT �21�
whereX*

1 = X1/m
1=2
X1

tT � ��X�1 � p1 � pT
1 � X�1T � X�2 � p2 � pT

2 � X�2T�tT�=tT
T � tT �22�

X*
1 is in fact composedof its first componentX*

1�p1�pT
1 andthe residual after deflation, E*

1. Thus

tT � ��X�1 � X�1T � X�2 � X�2T�tT�=tT
T � tT �23�

tT � f��X�1 � p1 � pT
1 � E�1�X�1T � �X�2 � p2 � pT

2 � E�2�X�2T�tTg=tT
T � tT �24�

tT � f�X�1�X�1 � p1 � pT
1 � E�1�T � X�2�X�2 � p2 � pT

2 � E�2�T�tTg=tT
T � tT �25�

tT � �X�1�p1 � pT
1X�1

T � tT � E�1
T � tT� � X�2�p2 � pT

2 � X�2T � tT � E�2
T � tT��=tT

T � tT �26�
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This equalsequation (22), becauseE*
1
T�tT andE*

2
T�tT areboth zero.

E�1
T � tT � X�1

T � tT ÿ p1 � tT
T � tT �27�

E�1
T � tT � p1 � tT

T � tT ÿ p1 � tT
T � tT � 0 �28�

From equations (16) and (23) we see that t and tT are the eigenvectors of X*
1�X*

1
T � X*

2�X*
2
T

corresponding to the samelargesteigenvalueandthereforeareequal.

II.2. Proof that u scoreof MBPLS equalsu scoreof PLS

PLSon X andY (X=[X1/m
1=2
X1 X2/m

1=2
X2 ] = [X*

1 X*
2]):

u � Y � q=qT � q �29�
u � Y � YT � t=qT � q � tT � t �30�
u � Y � YT � X � w=qT � q � tT � t �31�
u � Y � YT � X�1 � wo

1 � Y � YT � X�2 � wo
2=q

T � q � tT � t �32�
wherewo

1 is the part of w belonging to the variablesin X*
1

u � Y � YT � X�1 � X�1T � u� Y � YT � X�2 � X�2T � u=qT � q � tT � t � uT � u �33�
u � �Y � YT � X�1 � X�1T � Y � YT � X�2 � X�2T�u=qT � q � tT � t � uT � u �34�

MBPLS with X1, X2 andY:

u � Y � q=qT � q �35�
u � Y � YT � tT=qT � q � tT

T � tT �36�
u � �Y � YT � t1 � wT�1� � Y � YT � t2 � wT�2��=qT � q � tT

T � tT �37�
u � �Y � YT � t1 � tT

1 � u� Y � YT � t2 � tT
2 � u�=qT � q � tT

T � tT � uT � u �38�
u � �Y � YT � �X1=m

1=2
X1 � � w1wT

1 � �XT
1=m

1=2
X1 � � u�

Y � YT � �X2=m
1=2
X2 � � w2 � wT

2 � �XT
2=m

1=2
X2 � � u�=qT � q � tT

T � tT � uT � u �39�
u � �Y � YT � X�1 � w1 � wT

1 � X�1T � u� Y � YT � X�2 � w2 � wT
2 � X�2T � u�=qT � q � tT

T � tT � uT � u �40�
whereX*

1 = X1/m
1=2
X1

u � �Y � YT � X�1 � w1 � wT
1 � X�1T � Y � YT � X�2 � w2 � wT

2 � X�2T�u=qT � q � tT
T � tT � uT � u �41�

In the same way asin the CPCA caseit canbe shown that equations (34) and(41) areequal.This
showsthattheu scoreof PLSequalstheu scoreof MBPLS.Thesamecanbeshownfor thet scoreof
PLSandthe tT superscoreof MBPLS, whereboth derivationscome to the following equation:

tT � �X�1 � X�1T � Y � YT � X�2 � X�2T � Y � YT�tT=uT � u � qT � q � tT
T � tT �42�

APPENDIX III

In this appendix an example is used to illustrate that HPCA converges to different solutions
depending ontheinitial guessof thesuperscoretT. Thedatausedarefrom thesimulatedhypothetical
processthatwasshown in Example 4. Therearethreeblocks, whereX1 consists of temperaturesof
the first processunit andX2 andX3 contain respectively temperaturesandpressures of the second
processunit. Blocks X2 andX3 arecombinedinto one block (X2X3) aswasdonefor the results of

320 J. A. WESTERHUISET AL.

 1998JohnWiley & Sons,Ltd. J. Chemometrics, 12, 301–321(1998)



Table7.
Table8 showsthecumulativepercentagevariation explainedperblock ateachPCwhen adifferent

columnof a block is selectedasthe initial guessof thesuperscoretT. The percentagesof explained
variationin thefirst component(PC1)changefrom 1%to 61%for blockX1 andfrom 18%to 75%for
combined block X2X3 depending on the initi al guess.

Whentheiniti al guessis theeigenvector of XTX thatcorrespondsto thelargesteigenvalue,aswas
donethroughoutthisstudy,theHPCAsolutionequalsthesolution when column1 or column3 of X1

is chosento be the initial guess.
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Table8. Cumulativepercentageexplainedvariationof block X1 andcombinedblock X2X3 with HPCA whena
different columnis selectedasinitial guessof superscore

X1, col. 1 or 3 X1, col. 2 X2X3, col. 1, 3, 4, 5 or 6 X2X3, col. 2, 7 or 8

%X1 %X2X3 %X1 %X2X3 %X1 %X2X3 %X1 %X2X3

PC1 42 39 61 18 42 39 1 75
PC2 82 77 82 76 82 77 48 88
PC3 91 89 91 89 82 97 82 99
PC4 99 99 99 99 99 99 94 99
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